Journal of Biomedical Science

Journal Information
ISSN / EISSN : 1021-7770 / 1423-0127
Current Publisher: Springer Science and Business Media LLC (10.1186)
Former Publisher: S. Karger AG (10.1159) , Springer Science and Business Media LLC (10.1007) , Springer Science and Business Media LLC (10.1186) , Springer Science and Business Media LLC (10.1186) , Springer Science and Business Media LLC (10.1186) , Springer Science and Business Media LLC (10.1186)
Total articles ≅ 3,077
Current Coverage
Archived in

Latest articles in this journal

Sara Socorro Faria, Susan Costantini, Vladmir Cláudio Cordeiro de Lima, Victor Pianna de Andrade, Mickaël Rialland, Rebe Cedric, Alfredo Budillon,
Journal of Biomedical Science, Volume 28, pp 1-15; doi:10.1186/s12929-021-00724-8

Breast cancer is the most diagnosed malignancy in women. Increasing evidence has highlighted the importance of chronic inflammation at the local and/or systemic level in breast cancer pathobiology, influencing its progression, metastatic potential and therapeutic outcome by altering the tumor immune microenvironment. These processes are mediated by a variety of cytokines, chemokines and growth factors that exert their biological functions either locally or distantly. Inflammasomes are protein signaling complexes that form in response to damage- and pathogen-associated molecular patterns (DAMPS and PAMPS), triggering the release of pro-inflammatory cytokines. The dysregulation of inflammasome activation can lead to the development of inflammatory diseases, neurodegeneration, and cancer. A crucial signaling pathway leading to acute and chronic inflammation occurs through the activation of NLRP3 inflammasome followed by caspase 1-dependent release of IL-1β and IL-18 pro-inflammatory cytokines, as well as, by gasdermin D-mediated pyroptotic cell death. In this review we focus on the role of NLRP3 inflammasome and its components in breast cancer signaling, highlighting that a more detailed understanding of the clinical relevance of these pathways could significantly contribute to the development of novel therapeutic strategies for breast cancer.
Kunal Nepali,
Journal of Biomedical Science, Volume 28, pp 1-58; doi:10.1186/s12929-021-00721-x

Epigenetic drug discovery field has evidenced significant advancement in the recent times. A plethora of small molecule inhibitors have progressed to clinical stage investigations and are being explored exhaustively to ascertain conclusive benefits in diverse malignancies. Literature precedents indicates that substantial amount of efforts were directed towards the use of epigenetic tools in monotherapy as well as in combination regimens at the clinical level, however, the preclinical/preliminary explorations were inclined towards the identification of prudent approaches that can leverage the anticancer potential of small molecule epigenetic inhibitors as single agents only. This review article presents an update of FDA approved epigenetic drugs along with the epigenetic inhibitors undergoing clinical stage investigations in different cancer types. A detailed discussion of the pragmatic strategies that are expected to steer the progress of the epigenetic therapy through the implementation of emerging approaches such as PROTACS and CRISPR/Cas9 along with logical ways for scaffold fabrication to selectively approach the enzyme isoforms in pursuit of garnering amplified antitumor effects has been covered. In addition, the compilation also presents the rational strategies for the construction of multi-targeting scaffold assemblages employing previously identified pharmacophores as potential alternatives to the combination therapy.
Chanon Piamsiri, Chayodom Maneechote, Natthaphat Siri-Angkul, Siriporn C. Chattipakorn,
Journal of Biomedical Science, Volume 28, pp 1-13; doi:10.1186/s12929-021-00722-w

Cardiovascular diseases (CVDs) are considered the predominant cause of morbidity and mortality globally. Of these, myocardial infarction (MI) is the most common cause of CVD mortality. MI is a life-threatening condition which occurs when coronary perfusion is interrupted leading to cardiomyocyte death. Subsequent to MI, consequences include adverse cardiac remodeling and cardiac dysfunction mainly contribute to the development of heart failure (HF). It has been shown that loss of functional cardiomyocytes in MI-induced HF are associated with several cell death pathways, in particular necroptosis. Although the entire mechanism underlying necroptosis in MI progression is still not widely recognized, some recent studies have reported beneficial effects of necroptosis inhibitors on cell viability and cardiac function in chronic MI models. Therefore, extensive investigation into the necroptosis signaling pathway is indicated for further study. This article comprehensively reviews the context of the underlying mechanisms of necroptosis in chronic MI-induced HF in in vitro, in vivo and clinical studies. These findings could inform ways of developing novel therapeutic strategies to improve the clinical outcomes in MI patients from this point forward.
Yu-Chen S. H. Yang, Po-Jui Ko, Yi-Shin Pan, , Jacqueline Whang-Peng, Paul J. Davis, Kuan Wang
Journal of Biomedical Science, Volume 28, pp 1-13; doi:10.1186/s12929-021-00719-5

Thyroid hormone analogues—particularly, l-thyroxine (T4) has been shown to be relevant to the functions of a variety of cancers. Integrin αvβ3 is a plasma membrane structural protein linked to signal transduction pathways that are critical to cancer cell proliferation and metastasis. Thyroid hormones, T4 and to a less extend T3 bind cell surface integrin αvβ3, to stimulate the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway to stimulate cancer cell growth. Thyroid hormone analogues also engage in crosstalk with the epidermal growth factor receptor (EGFR)-Ras pathway. EGFR signal generation and, downstream, transduction of Ras/Raf pathway signals contribute importantly to tumor cell progression. Mutated Ras oncogenes contribute to chemoresistance in colorectal carcinoma (CRC); chemoresistance may depend in part on the activity of ERK1/2 pathway. In this review, we evaluate the contribution of thyroxine interacting with integrin αvβ3 and crosstalking with EGFR/Ras signaling pathway non-genomically in CRC proliferation. Tetraiodothyroacetic acid (tetrac), the deaminated analogue of T4, and its nano-derivative, NDAT, have anticancer functions, with effectiveness against CRC and other tumors. In Ras-mutant CRC cells, tetrac derivatives may overcome chemoresistance to other drugs via actions initiated at integrin αvβ3 and involving, downstream, the EGFR-Ras signaling pathways.
Journal of Biomedical Science, Volume 28, pp 1-14; doi:10.1186/s12929-021-00718-6

Objective To evaluate the impact of hepatitis C virus (HCV) elimination via interferon (IFN)-based therapy on gene expression profiles related to the immune system in HIV/HCV-coinfected patients. Methods We conducted a prospective study in 28 HIV/HCV-coinfected patients receiving IFN-based therapy at baseline (HIV/HCV-b) and week 24 after sustained virological response (HIV/HCV-f). Twenty-seven HIV-monoinfected patients (HIV-mono) were included as a control. RNA-seq analysis was performed on peripheral blood mononuclear cells (PBMCs). Genes with a fold-change (FC) ≥ 1.5 (in either direction) and false discovery rate (FDR) ≤ 0.05 were identified as significantly differentially expressed (SDE). Results HIV/HCV-b showed six SDE genes compared to HIV-mono group, but no significantly enriched pathways were observed. For HIV/HCV-f vs. HIV/HCV-b, we found 58 SDE genes, 34 upregulated and 24 downregulated in the HIV/HCV-f group. Of these, the most overexpressed were CXCL2, PDCD6IP, ATP5B, IGSF9, RAB26, and CSRNP1, and the most downregulated were IFI44 and IFI44L. These 58 SDE genes revealed two significantly enriched pathways (FDR < 0.05), one linked to Epstein-Barr virus infection and another related to p53 signaling. For HIV/HCV-f vs. HIV-mono group, we found 44 SDE genes that revealed 31 enriched pathways (FDR < 0.05) related to inflammation, cancer/cell cycle alteration, viral and bacterial infection, and comorbidities associated with HIV/HCV-coinfection. Five genes were overrepresented in most pathways (JUN, NFKBIA, PIK3R2, CDC42, and STAT3). Conclusion HIV/HCV-coinfected patients who eradicated hepatitis C with IFN-based therapy showed profound gene expression changes after achieving sustained virological response. The altered pathways were related to inflammation and liver-related complications, such as non-alcoholic fatty liver disease and hepatocellular carcinoma, underscoring the need for active surveillance for these patients.
Ju-Yi Chen, Yi-Pin Wu, Chih-Yi Li, Huei-Fen Jheng, Ling-Zhen Kao, Ching-Chun Yang, Sy-Ying Leu, I-Chia Lien, Wen-Tsan Weng, Haw-Chih Tai, et al.
Journal of Biomedical Science, Volume 28, pp 1-19; doi:10.1186/s12929-021-00720-y

Background Obesity-related cardiovascular risk, end points, and mortality are strongly related to arterial stiffening. Current therapeutic approaches for arterial stiffening are not focused on direct targeting within the vessel. Perivascular adipose tissue (PVAT) surrounding the artery has been shown to modulate vascular function and inflammation. Peroxisome proliferator-activated receptor γ (PPARγ) activation significantly decreases arterial stiffness and inflammation in diabetic patients with coronary artery disease. Thus, we hypothesized that PPARγ activation alters the PVAT microenvironment, thereby creating a favorable environment for the attenuation of arterial stiffening in obesity. Methods Obese ob/ob mice were used to investigate the effect of PPARγ activation on the attenuation of arterial stiffening. Various cell types, including macrophages, fibroblasts, adipocytes, and vascular smooth muscle cells, were used to test the inhibitory effect of pioglitazone, a PPARγ agonist, on the expression of elastolytic enzymes. Results PPARγ activation by pioglitazone effectively attenuated arterial stiffening in ob/ob mice. This beneficial effect was not associated with the repartitioning of fat from or changes in the browning of the PVAT depot but was strongly related to improvement of the PVAT microenvironment, as evidenced by reduction in the expression of pro-inflammatory and pro-oxidative factors. Pioglitazone treatment attenuated obesity-induced elastin fiber fragmentation and elastolytic activity and ameliorated the obesity-induced upregulation of cathepsin S and metalloproteinase 12, predominantly in the PVAT. In vitro, pioglitazone downregulated Ctss and Mmp12 in macrophages, fibroblasts, and adipocytes—cell types residing within the adventitia and PVAT. Ultimately, several PPARγ binding sites were found in Ctss and Mmp12 in Raw 264.7 and 3T3-L1 cells, suggesting a direct regulatory mechanism by which PPARγ activation repressed the expression of Ctss and Mmp-12 in macrophages and fibroblasts. Conclusions PPARγ activation attenuated obesity-induced arterial stiffening and reduced the inflammatory and oxidative status of PVAT. The improvement of the PVAT microenvironment further contributed to the amelioration of elastin fiber fragmentation, elastolytic activity, and upregulated expression of Ctss and Mmp12. Our data highlight the PVAT microenvironment as an important target against arterial stiffening in obesity and provide a novel strategy for the potential clinical use of PPARγ agonists as a therapeutic against arterial stiffness through modulation of PVAT function.
Journal of Biomedical Science, Volume 28, pp 1-18; doi:10.1186/s12929-021-00715-9

Breast cancer is the most common solid cancer that affects female population globally. MicroRNAs (miRNAs) are short non-coding RNAs that can regulate post-transcriptional modification of multiple downstream genes. Autophagy is a conserved cellular catabolic activity that aims to provide nutrients and degrade un-usable macromolecules in mammalian cells. A number of in vitro, in vivo and clinical studies have reported that some miRNAs could modulate autophagy activity in human breast cancer cells, and these would influence human breast cancer progression and treatment response. Therefore, this review was aimed to discuss the roles of autophagy-regulating miRNAs in influencing breast cancer development and treatment response. The review would first introduce autophagy types and process, followed by the discussion of the roles of different miRNAs in modulating autophagy in human breast cancer, and to explore how would this miRNA-autophagy regulatory process affect the disease progression or treatment response. Lastly, the potential applications and challenges of utilizing autophagy-regulating miRNAs as breast cancer biomarkers and novel therapeutic agents would be discussed.
Xuelian Tang, Weijun Wang, Gaichao Hong, Caihan Duan, Siran Zhu, Yuen Tian, Chaoqun Han, Wei Qian, ,
Journal of Biomedical Science, Volume 28, pp 1-17; doi:10.1186/s12929-021-00711-z

Background and aims Previous study disclosed Fucosyltransferase 2 (Fut2) gene as a IBD risk locus. This study aimed to explore the mechanism of Fut2 in IBD susceptibility and to propose a new strategy for the treatment of IBD. Methods Intestinal epithelium-specific Fut2 knockout (Fut2 △IEC) mice was used. Colitis was induced by dextran sulfate sodium (DSS). The composition and diversity of gut microbiota were assessed via 16S rRNA analysis and the metabolomic findings was obtained from mice feces via metabolite profiling. The fecal microbiota transplantation (FMT) experiment was performed to confirm the association of gut microbiota and LPC. WT mice were treated with Lysophosphatidylcholine (LPC) to verify its impact on colitis. Results The expression of Fut2 and α-1,2-fucosylation in colonic tissues were decreased in patients with UC (UC vs. control, P = 0.036) and CD (CD vs. control, P = 0.031). When treated with DSS, in comparison to WT mice, more severe intestinal inflammation and destructive barrier functions in Fut2 △IEC mice was noted. Lower gut microbiota diversity was observed in Fut2 △IEC mice compared with WT mice (p < 0.001). When exposed to DSS, gut bacterial diversity and composition altered obviously in Fut2 △IEC mice and the fecal concentration of LPC was increased. FMT experiment revealed that mice received the fecal microbiota from Fut2 △IEC mice exhibited more severe colitis and higher fecal LPC concentration. Correlation analysis showed that the concentration of LPC was positively correlated with four bacteria—Escherichia, Bilophila, Enterorhabdus and Gordonibacter. Furthermore, LPC was proved to promote the release of pro-inflammatory cytokines and damage epithelial barrier in vitro and in vivo. Conclusion Fut2 and α-1,2-fucosylation in colon were decreased not only in CD but also in UC patients. Gut microbiota in Fut2 △IEC mice is altered structurally and functionally, promoting generation of LPC which was proved to promote inflammation and damage epithelial barrier.
Shang-Hsin Wu, Mei-Hwei Chang, Ya-Hui Chen, Hui-Lin Wu, Huey-Huey Chua, Chin-Sung Chien, Yen-Hsuan Ni, ,
Journal of Biomedical Science, Volume 28, pp 1-18; doi:10.1186/s12929-020-00706-2

Background The bile salt export pump (BSEP) is a pivotal apical/canalicular bile salt transporter in hepatocytes that drives the bile flow. Defects in BSEP function and canalicular expression could lead to a spectrum of cholestatic liver diseases. One prominent manifestation of BSEP-associated cholestasis is the defective canalicular localization and cytoplasmic retention of BSEP. However, the etiology of impaired BSEP targeting to the canalicular membrane is not fully understood. Our goal was to discover what molecule could interact with BSEP and affect its post-Golgi sorting. Methods The human BSEP amino acids (a.a.) 491-630 was used as bait to screen a human fetal liver cDNA library through yeast two-hybrid system. We identified a BSEP-interacting candidate and showed the interaction and colocalization in the co-immunoprecipitation in hepatoma cell lines and histological staining in human liver samples. Temperature shift assays were used to study the post-Golgi trafficking of BSEP. We further determine the functional impacts of the BSEP-interacting candidate on BSEP in vitro. A hydrodynamically injected mouse model was established for in vivo characterizing the long-term impacts on BSEP. Results We identified that charged multivesicular body protein 5 (CHMP5), a molecule of the endosomal protein complex required for transport subcomplex-III (ESCRT-III), interacted and co-localized with BSEP in the subapical compartments (SACs) in developing human livers. Cholestatic BSEP mutations in the CHMP5-interaction region have defects in canalicular targeting and aberrant retention at the SACs. Post-Golgi delivery of BSEP and bile acid secretion were impaired in ESCRT-III perturbation or CHMP5-knockdown hepatic cellular and mouse models. This ESCRT-III-mediated BSEP sorting preceded Rab11A-regulated apical cycling of BSEP. Conclusions Our results showed the first example that ESCRT-III is essential for canalicular trafficking of apical membrane proteins, and provide new targets for therapeutic approaches in BSEP associated cholestasis.
Chia-Hung Chien, Wei-Ting Hsueh, Jian-Ying Chuang,
Journal of Biomedical Science, Volume 28, pp 1-10; doi:10.1186/s12929-021-00717-7

Glioblastoma is the most common primary malignant brain tumor that is usually considered fatal even with treatment. This is often a result for tumor to develop resistance. Regarding the standard chemotherapy, the alkylating agent temozolomide is effective in disease control but the recurrence will still occur eventually. The mechanism of the resistance is various, and differs in terms of innate or acquired. To date, aberrations in O6-methylguanine-DNA methyltransferase are the clear factor that determines drug susceptibility. Alterations of the other DNA damage repair genes such as DNA mismatch repair genes are also known to affect the drug effect. Together these genes have roles in the innate resistance, but are not sufficient for explaining the mechanism leading to acquired resistance. Recent identification of specific cellular subsets with features of stem-like cells may have role in this process. The glioma stem-like cells are known for its superior ability in withstanding the drug-induced cytotoxicity, and giving the chance to repopulate the tumor. The mechanism is complicated to administrate cellular protection, such as the enhancing ability against reactive oxygen species and altering energy metabolism, the important steps to survive. In this review, we discuss the possible mechanism for these specific cellular subsets to evade cancer treatment, and the possible impact to the following treatment courses. In addition, we also discuss the possibility that can overcome this obstacle.
Back to Top Top