Journal of Nuclear Physics, Material Sciences, Radiation and Applications

Journal Information
ISSN / EISSN : 2321-8649 / 2321-9289
Current Publisher: Chitkara University Publications (10.15415)
Total articles ≅ 179
Archived in

Latest articles in this journal

E. Pardo L., S. E. Rodil, B. Campillo, I. Dominguez, J. G. González-Rodriguez, H. Martinez
Journal of Nuclear Physics, Material Sciences, Radiation and Applications, Volume 8, pp 203-209; doi:10.15415/jnp.2021.82027

Coatings by physical vapor deposition (PVD) have become highly relevant due to their wide range of applications and the rapid rate of coating formation. In this work, AISI steel 1045 was coated with two layers, Ni and Co using the PVD technique. Each coating was deposited with a thickness of 1 μm. After applying the coatings, a post-treatment was applied in an AC plasma reactor using a boron nitride blank in an Ar atmosphere at a pressure of 3 Torr, 0.3 A, and 460 V at 4, 8, and 12h. The post-treatment was characterized by optical emission spectroscopy (OES) in a range of 200-1100 nm. The main species observed by OES were Ar+, N2, N2+, and B+. The coatings on 1045 steel and posttreatment were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Also, were subjected to tribological tests to analyze wear resistance, using the Pin-on-Disk technique. The coatings on steel 1045 present remarkably better wear properties than the uncoated 1045 steel, being the sample post-treated at 4h that showed a lower wear rate.
, Mendieta-Mendoza Aurora, Montero-Cabrera María Elena, Manjón-Collado Guillermo, Galván-Moreno José Antonio
Journal of Nuclear Physics, Material Sciences, Radiation and Applications, Volume 8, pp 183-190; doi:10.15415/jnp.2021.82024

In arid zones, the principal water supply is from groundwater, which can present high concentration of salts, heavy metals, and radioactive elements. The aim of the study was to determine isotopic uranium concentration in groundwater samples with high concentration of salts and its association with other chemical species. Samples were taken from wells with high salt content. The 238,234U radioisotope concentrations were determined by liquid scintillation and alpha-particle spectrometry. In addition, the physical-chemical parameters were recorded in situ; whereas the dissolved ions and elemental composition were measured by UV-Vis and X-ray fluorescence spectrophotometry, respectively. To obtain isotopic uranium concentrations, three radiochemistry procedures were carried out. An ANOVA test was performed to compare the results from procedures, as well as an analysis of Pearson correlation was used between parameters to obtain their associations. Statistically, the U isotopic concentrations did not show differences (p-value 0.82) between procedures. 238U and 234U showed mean concentrations of 6.7 mBq mL-1 and 16.6 mBq mL-1, respectively, with an Activity Ratioby up 7.2. The groundwater under study showed high concentration of TDS, calcium, sulphate, chloride, nitrate, and nitrite. Isotopic U concentrations tend to increase with NO3>Zn>Cl>Br>SO4>Cu>T>SDT>P; meanwhile their contents decrease with T>Cl->NO2>Fe. These findings help us to understand the uranium behavior in groundwater with high salt contents as well as the influence of agricultural supplies on chemical species presents in groundwater.
L. Sajo-Bohus, J. A. López, M. Castro-Colin
Journal of Nuclear Physics, Material Sciences, Radiation and Applications, Volume 8, pp 155-160; doi:10.15415/jnp.2021.82020

Adverse effects of long-term exposure to galactic cosmic radiation (GCR) pose a non negligible obstacle for future space exploration programs; the high-LET-particle-rich environment has an adverse effect on human health. Concomitant to GCR we have as well solar particle radiation. Long term space exploration will rely on adequate and highly efficient shielding materials that will reduce exposure of both biosystems and electronic equipment to GCR and solar particles. The shield must attenuate efficiently heavy GCR ions, by breaking them up into less-damaging fragments and secondary radiation: biologically damaging energetic neutrons and highly charged and energetic HZE- particles. An approach to this problem is the development of shielding compounds. Shielding materials should address the conditions of different aspects of a given mission, e.g. time duration and travel path. The Monte Carlo method (GEANT4) is here employed to estimate the effects of a shielding material based on the recently developed Bi2O3-based compound (Cao et al., 2020). In the present study GEANT4 code is used to make estimations of attenuation of solar protons. The objective is to provide some insight about the effect of the new composite shield that has an intrinsic capability for dose reduction.
A. Lima Flores, R. Palomino-Merino, V. M. Castaño, J. I. Golzarri, G. Espinosa
Journal of Nuclear Physics, Material Sciences, Radiation and Applications, Volume 8, pp 109-114; doi:10.15415/jnp.2021.82013

The “measuring device” is one of the most reliable, efficient and economic indoor radon dosimeters that exist. This device was developed by the Proyecto de Aplicaciones de la Dosimetría (PAD) at the Physics Institute of UNAM (IF-UNAM) and consists of a transparent rigid plastic cup, a CR-39 polycarbonate sheet and a standard size metal clip that is used to hold the polycarbonate in the center of the cup. The cup is wrapped and covered with a low-density polyurethane protector in order to prevent the detector from being irradiated by ionizing particles found in the environment. In this work, an analysis was carried out that allowed to understand how the radon concentration on the polycarbonate sheet varies when its height is changed with respect to the base of the plastic cup, in order to understand what position increase the probability of interaction between radon and the surface of the detector. For the development of this work, four computational simulations were performed with the technique called Computational Fluid Dynamics (CFD). The results shows that as the CR-39 is positioned more closed to the base of the cup, the probability of interaction of the radon and the detector increase. Based on these results it is concluded that, when there is a limit in the time in which a measuring device can be placed in the zone where it is desired to quantify indoor radon, it is recommended to collocated the CR-39 at 1 cm with respect to the base of the cup.
, Caraveo-Castro Carmen del Rocío, Méndez-García Carmen Grisel, Mendieta-Mendoza Aurora, Rentería-Villalobos Marusia, Cabral-Lares Rocío Magaly
Journal of Nuclear Physics, Material Sciences, Radiation and Applications, Volume 8, pp 115-120; doi:10.15415/jnp.2021.82014

Uranium is a radioactive element with a special presence in the rocks, waters, sediments, soils, and plants at the state of Chihuahua. The activity ratio of 238U/234U is used to explain the uranium transport by surface water and its deposition in arid environments. In this work, the activity concentration of natural U isotopes is determined by PERALS liquid scintillation and high-resolution alpha spectrometry (AS, Canberra camera 7401VR) in the Environmental Radiological Surveillance Laboratory (LVRA) at CIMAV, Chihuahua. Uranium is extracted from soils through the scintillating liquid extractor URAEX for PERALS, with chemical recovery (CR) of 80 - 85 %, and through the ion exchange resin UTEVA + electrode position by the Hallstadius method, with CR of 85 - 90 %, for AS. The procedures of 234U and 238U activity concentration (AC) determination in soils were validated by their application to the certified reference material IAEA-375. The resulting values were in the reference range of the certified or informative values. Both procedures were applied to 6 representative soil samples, with AC of the same order of magnitude or greater, and similar CR and compatible results. Both procedures are satisfactory for the purposes of LVRA research and in general.
Journal of Nuclear Physics, Material Sciences, Radiation and Applications, Volume 8, pp 191-196; doi:10.15415/jnp.2021.82025

Polymers currently represent materials that are cost-effective, while its recycled nature is significant in terms of environmental protection. However, the surface properties of polymers often do not meet the demands of wettability, adhesion, and friction, among others. Atmospheric plasma treatment on the surface of polymers improves its physical-chemistry properties. In this work, a recycled nylon coating was prepared by the spin coating technique and characterized by Fourier transform infrared spectroscopy and X-ray diffraction. This coating was treated by atmospheric plasma, and Raman spectroscopy was performed to analyze the signals related to different functional groups present in the coating surface after plasma treatment. The action of plasma on the surface morphology was observed by scanning electron microscopy. The contact angle results showed an improvement in surface wettability.
O. Xosocotla, H. Martinez, B. Campillo
Journal of Nuclear Physics, Material Sciences, Radiation and Applications, Volume 8, pp 97-104; doi:10.15415/jnp.2021.82011

In this investigation, we studied the influence of atmospheric pressure plasma treatment on the surface properties of polypropylene (PP). The PP samples were treated for various durations using a gliding arc plasma source with air as a working gas. The formation of polar groups (–OH and C = O) on the PP surface after plasma treatment was evaluated and analyzed using Raman spectroscopy and attenuated total reflection–Fourier transform infrared spectroscopy. The contact angle was measured using polar and non-polar liquids to obtain the polar and dispersive components as well as the surface free energy of the PP before and after treatment. A sevenfold increase after treatment was observed for the polar component, while hydrophobicity decreased 73% after treatment. Finally, changes in topography were observed using atomic force microscopy (AFM) analysis before and after plasma treatment. AFM images showed that under atmospheric treatment, the PP surface underwent etching, reducing the surface roughness. Microhardness measurements of the films also revealed significant changes in mechanical properties after plasma treatment.
A. Meléndez-López, M. F. García-Hurtado, J. Cruz-Castañeda, A. Negrón-Mendoza, S. Ramos-Bernal, A. Heredia
Journal of Nuclear Physics, Material Sciences, Radiation and Applications, Volume 8, pp 105-108; doi:10.15415/jnp.2021.82012

Aspartic acid is an amino acid present in the modern proteins, however, is considered a primitive amino acid hence its importance in prebiotic chemistry experiments studies. In some works of prebiotic chemistry have been studied the synthesis and the stability of organic matter under high energy sources, and the role of clays has been highlighted due to clays that can affect the reaction mechanisms in the radiolytic processes. The present work is focused on the study of the role of Namontmorillonite in the gamma radiolysis processes of L-aspartic acid. Gamma radiolysis processes were carried out in three different systems a) L-aspartic acid in aqueous solution; b) L-aspartic acid in solid-state; and c) L-aspartic acid adsorbed into Na-montmorillonite. L-aspartic acid was analyzed by high-performance liquid chromatography−electrospray ionization−mass spectrometry (HPLCESI-MS). The results showed that the decomposition of L-aspartic acid considerably decreased in the presence of clay thus highlighting the protector role of clays and favors the stability of organic matter even under the possible high energy conditions of primitive environments. The principal product ofgamma radiolysis of L-aspartic acid was succinic acid produced by deamination reaction. On the other hand, when aspartic acid was irradiated in solid-state the main product was the L-aspartic acid dimer. Both radiolysis products are important for chemical evolution processes for L-aspartic acid in primitive environments.
, O. Del Ángel-Gómez, R. Raya-Arredondo, S. S. Cruz-Galindo, J. I. Golzarri-Moreno, G. Espinosa
Journal of Nuclear Physics, Material Sciences, Radiation and Applications, Volume 8, pp 149-153; doi:10.15415/jnp.2021.82019

The neutron flux of the Triga Mark III research reactor was studied using nuclear track detectors. The facility of the National Institute for Nuclear Research (ININ), operates with a new core load of 85 LEU 30/20 (Low Enriched Uranium) fuel elements. The reactor provides a neutron flux around 2 × 1012 n cm-2s-1 at the irradiation channel. In this channel, CR-39 (allyl diglycol policarbonate) Landauer® detectors were exposed to neutrons; the detectors were covered with a 3 mm acrylic sheet for (n, p) reaction. Results show a linear response between the reactor power in the range 0.1 - 7 kW, and the average nuclear track density with data reproducibility and relatively low uncertainty (±5%). The method is a simple technique, fast and reliable procedure to monitor the research reactor operating power levels.
O. Félix-Beltrán, J. E. Barradas-Guevara J. E. Barradas-Guevara, F. González-Canales
Journal of Nuclear Physics, Material Sciences, Radiation and Applications, Volume 8, pp 161-168; doi:10.15415/jnp.2021.82021

We realize a model-independent study of the so-called Tri-Bi-Maximal pattern of leptonic flavor mixing. Different charged lepton mass matrix textures are studied. In particular, we are interested in those textures with a minimum number of parameters and that are able to reproduce the current experimental data on neutrino oscillation. The textures studied here form an equivalent class with two texture zeros. We obtain a Tri-Bi-Maximal pattern deviation in terms of the charged leptons masses, leading to a reactor angle and three CP violation phases non-zero. These lastest are one CP violation phase Dirac-like and two phases Majorana-like. Also, we can test the phenomenological implications of the numerical values obtained for the mixing angles and CP violation phases, on the neutrinoless double beta decay, and in the present and upcoming experiments on long-base neutrino oscillation, such as T2K, NOvA, and DUNE.
Back to Top Top