Cellular and Molecular Life Sciences

Journal Information
ISSN / EISSN : 1420-682X / 1420-9071
Total articles ≅ 33,096
Current Coverage
Archived in

Latest articles in this journal

Cellular and Molecular Life Sciences pp 1-18; doi:10.1007/s00018-021-03905-8

Amyotrophic lateral sclerosis (ALS) is a rare, devastating disease, causing movement impairment, respiratory failure and ultimate death. A plethora of genetic, cellular and molecular mechanisms are involved in ALS signature, although the initiating causes and progressive pathological events are far from being understood. Drosophila research has produced seminal discoveries for more than a century and has been successfully used in the past 25 years to untangle the process of ALS pathogenesis, and recognize potential markers and novel strategies for therapeutic solutions. This review will provide an updated view of several ALS modifiers validated in C9ORF72, SOD1, FUS, TDP-43 and Ataxin-2 Drosophila models. We will discuss basic and preclinical findings, illustrating recent developments and novel breakthroughs, also depicting unsettled challenges and limitations in the Drosophila-ALS field. We intend to stimulate a renewed debate on Drosophila as a screening route to identify more successful disease modifiers and neuroprotective agents.
Joana Magalhães, Jessica Eira,
Cellular and Molecular Life Sciences pp 1-13; doi:10.1007/s00018-021-03899-3

Transthyretin (TTR) is an extracellular protein mainly produced in the liver and choroid plexus, with a well-stablished role in the transport of thyroxin and retinol throughout the body and brain. TTR is prone to aggregation, as both wild-type and mutated forms of the protein can lead to the accumulation of amyloid deposits, resulting in a disease called TTR amyloidosis. Recently, novel activities for TTR in cell biology have emerged, ranging from neuronal health preservation in both central and peripheral nervous systems, to cellular fate determination, regulation of proliferation and metabolism. Here, we review the novel literature regarding TTR new cellular effects. We pinpoint TTR as major player on brain health and nerve biology, activities that might impact on nervous systems pathologies, and assign a new link between TTR and angiogenesis and cancer. We also explore the molecular mechanisms underlying TTR activities at the cellular level, and suggest that these might go beyond its most acknowledged carrier functions and include interaction with receptors and activation of intracellular signaling pathways.
Yi-Ju Ho, Chih-Chung Huang, Ching-Hsiang Fan, ,
Cellular and Molecular Life Sciences pp 1-23; doi:10.1007/s00018-021-03904-9

Ultrasonic technologies show great promise for diagnostic imaging and drug delivery in theranostic applications. The development of functional and molecular ultrasound imaging is based on the technical breakthrough of high frame–rate ultrasound. The evolution of shear wave elastography, high-frequency ultrasound imaging, ultrasound contrast imaging, and super-resolution blood flow imaging are described in this review. Recently, the therapeutic potential of the interaction of ultrasound with microbubble cavitation or droplet vaporization has become recognized. Microbubbles and phase-change droplets not only provide effective contrast media, but also show great therapeutic potential. Interaction with ultrasound induces unique and distinguishable biophysical features in microbubbles and droplets that promote drug loading and delivery. In particular, this approach demonstrates potential for central nervous system applications. Here, we systemically review the technological developments of theranostic ultrasound including novel ultrasound imaging techniques, the synergetic use of ultrasound with microbubbles and droplets, and microbubble/droplet drug-loading strategies for anticancer applications and disease modulation. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theranostic tool.
Leena Haataja, Anoop Arunagiri, Anis Hassan, Kaitlin Regan, Billy Tsai, Balamurugan Dhayalan, Michael A. Weiss, Ming Liu,
Cellular and Molecular Life Sciences pp 1-15; doi:10.1007/s00018-021-03871-1

A precondition for efficient proinsulin export from the endoplasmic reticulum (ER) is that proinsulin meets ER quality control folding requirements, including formation of the Cys(B19)–Cys(A20) “interchain” disulfide bond, facilitating formation of the Cys(B7)–Cys(A7) bridge. The third proinsulin disulfide, Cys(A6)–Cys(A11), is not required for anterograde trafficking, i.e., a “lose-A6/A11” mutant [Cys(A6), Cys(A11) both converted to Ser] is well secreted. Nevertheless, an unpaired Cys(A11) can participate in disulfide mispairings, causing ER retention of proinsulin. Among the many missense mutations causing the syndrome of Mutant INS gene-induced Diabetes of Youth (MIDY), all seem to exhibit perturbed proinsulin disulfide bond formation. Here, we have examined a series of seven MIDY mutants [including G(B8)V, Y(B26)C, L(A16)P, H(B5)D, V(B18)A, R(Cpep + 2)C, E(A4)K], six of which are essentially completely blocked in export from the ER in pancreatic β-cells. Three of these mutants, however, must disrupt the Cys(A6)–Cys(A11) pairing to expose a critical unpaired cysteine thiol perturbation of proinsulin folding and ER export, because when introduced into the proinsulin lose-A6/A11 background, these mutants exhibit native-like disulfide bonding and improved trafficking. This maneuver also ameliorates dominant-negative blockade of export of co-expressed wild-type proinsulin. A growing molecular understanding of proinsulin misfolding may permit allele-specific pharmacological targeting for some MIDY mutants.
Tobias F. Fischer, Anne S. Czerniak, Tina Weiß, Clara T. Schoeder, Philipp Wolf, Oliver Seitz, Jens Meiler,
Cellular and Molecular Life Sciences pp 1-17; doi:10.1007/s00018-021-03894-8

Tight regulation of cytokines is essential for the initiation and resolution of inflammation. Chemerin, a mediator of innate immunity, mainly acts on chemokine-like receptor 1 (CMKLR1) to induce the migration of macrophages and dendritic cells. The role of the second chemerin receptor, G protein-coupled receptor 1 (GPR1), is still unclear. Here we demonstrate that GPR1 shows ligand-induced arrestin3 recruitment and internalization. The chemerin C-terminus triggers this activation by folding into a loop structure, binding to aromatic residues in the extracellular loops of GPR1. While this overall binding mode is shared between GPR1 and CMKLR1, differences in their respective extracellular loop 2 allowed for the design of the first GPR1-selective peptide. However, our results suggest that ligand-induced arrestin recruitment is not the only mode of action of GPR1. This receptor also displays constitutive internalization, which allows GPR1 to internalize inactive peptides efficiently by an activation-independent pathway. Our results demonstrate that GPR1 takes a dual role in regulating chemerin activity: as a signaling receptor for arrestin-based signaling on one hand, and as a scavenging receptor with broader ligand specificity on the other. Graphic abstract
Cellular and Molecular Life Sciences pp 1-16; doi:10.1007/s00018-021-03873-z

Lymph node metastasis is a crucial prognostic parameter in many different types of cancers and a gateway for further dissemination to distant organs. Prior to metastatic dissemination, the primary tumor prepares for the remodeling of the draining (sentinel) lymph node by secreting soluble factors or releasing extracellular vesicles that are transported by lymphatic vessels. These important changes occur before the appearance of the first metastatic cell and create what is known as a pre-metastatic niche giving rise to the subsequent survival and growth of metastatic cells. In this review, the lymph node structure, matrix composition and the emerging heterogeneity of cells forming it are described. Current knowledge of the major cellular and molecular processes associated with nodal pre-metastatic niche formation, including lymphangiogenesis, extracellular matrix remodeling, and immunosuppressive cell enlisting in lymph nodes are additionally summarized. Finally, future directions that research could possibly take and the clinical impact are discussed.
Xin Geng, Yen-Chun Ho,
Cellular and Molecular Life Sciences pp 1-21; doi:10.1007/s00018-021-03886-8

Lymphatic vasculature is an integral part of the cardiovascular system where it maintains interstitial fluid balance. Additionally, lymphatic vasculature regulates lipid assimilation and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels and valves that function in synergy to absorb and transport fluid against gravitational and pressure gradients. Defects in lymphatic vessels or valves leads to fluid accumulation in tissues (lymphedema), chylous ascites, chylothorax, metabolic disorders and inflammation. The past three decades of research has identified numerous molecules that are necessary for the stepwise development of lymphatic vasculature. However, approaches to treat lymphatic disorders are still limited to massages and compression bandages. Hence, better understanding of the mechanisms that regulate lymphatic vascular development and function is urgently needed to develop efficient therapies. Recent research has linked mechanical signals such as shear stress and matrix stiffness with biochemical pathways that regulate lymphatic vessel growth, patterning and maturation and valve formation. The goal of this review article is to highlight these innovative developments and speculate on unanswered questions.
, Jie Wang, Queping Liu, Xiaojun Wu,
Published: 8 July 2021
by 10.1007
Cellular and Molecular Life Sciences pp 1-13; doi:10.1007/s00018-021-03895-7

The publisher has not yet granted permission to display this abstract.
Honghu Li, Qian Luo, Wei Shan, Shuyang Cai, Ruxiu Tie, Yulin Xu, Yu Lin, ,
Cellular and Molecular Life Sciences, Volume 78, pp 5881-5902; doi:10.1007/s00018-021-03882-y

Hematopoietic stem cells (HSCs) perceive both soluble signals and biomechanical inputs from their microenvironment and cells themselves. Emerging as critical regulators of the blood program, biomechanical cues such as extracellular matrix stiffness, fluid mechanical stress, confined adhesiveness, and cell-intrinsic forces modulate multiple capacities of HSCs through mechanotransduction. In recent years, research has furthered the scientific community’s perception of mechano-based signaling networks in the regulation of several cellular processes. However, the underlying molecular details of the biomechanical regulatory paradigm in HSCs remain poorly elucidated and researchers are still lacking in the ability to produce bona fide HSCs ex vivo for clinical use. This review presents an overview of the mechanical control of both embryonic and adult HSCs, discusses some recent insights into the mechanisms of mechanosensing and mechanotransduction, and highlights the application of mechanical cues aiming at HSC expansion or differentiation.
Wen Kin Lim, Prameet Kaur, Huanyan Huang, Richard Shim Jo, Anupriya Ramamoorthy, Li Fang Ng, Jahnavi Suresh, Fahrisa Islam Maisha, Ajay S. Mathuru,
Cellular and Molecular Life Sciences, Volume 78, pp 5865-5880; doi:10.1007/s00018-021-03836-4

Many organs and tissues have an intrinsic ability to regenerate from a dedicated, tissue-specific stem cell pool. As organisms age, the process of self-regulation or homeostasis begins to slow down with fewer stem cells available for tissue repair. Tissues become more fragile and organs less efficient. This slowdown of homeostatic processes leads to the development of cellular and neurodegenerative diseases. In this review, we highlight the recent use and future potential of optogenetic approaches to study homeostasis. Optogenetics uses photosensitive molecules and genetic engineering to modulate cellular activity in vivo, allowing precise experiments with spatiotemporal control. We look at applications of this technology for understanding the mechanisms governing homeostasis and degeneration as applied to widely used model organisms, such as Drosophila melanogaster, where other common tools are less effective or unavailable.
Back to Top Top