Journal Information
ISSN / EISSN : 0009-5915 / 1432-0886
Published by: Springer Nature (10.1007)
Total articles ≅ 5,355
Current Coverage
Archived in

Latest articles in this journal

M. Solé, , , O. Valero, B. Cárdenas, G. Fonseka, , Á. Pascual, R. Frodsham, , et al.
Published: 12 August 2022
In most eukaryotes, pairing of homologous chromosomes is an essential feature of meiosis that ensures homologous recombination and segregation. However, when the pairing process begins, it is still under investigation. Contrasting data exists in Mus musculus, since both leptotene DSB-dependent and preleptotene DSB-independent mechanisms have been described. To unravel this contention, we examined homologous pairing in pre-meiotic and meiotic Mus musculus cells using a three-dimensional fluorescence in situ hybridization-based protocol, which enables the analysis of the entire karyotype using DNA painting probes. Our data establishes in an unambiguously manner that 73.83% of homologous chromosomes are already paired at premeiotic stages (spermatogonia-early preleptotene spermatocytes). The percentage of paired homologous chromosomes increases to 84.60% at mid-preleptotene-zygotene stage, reaching 100% at pachytene stage. Importantly, our results demonstrate a high percentage of homologous pairing observed before the onset of meiosis; this pairing does not occur randomly, as the percentage was higher than that observed in somatic cells (19.47%) and between nonhomologous chromosomes (41.1%). Finally, we have also observed that premeiotic homologous pairing is asynchronous and independent of the chromosome size, GC content, or presence of NOR regions.
, Michelle Swift, Aislinn Sowash, Alexander N. Fahmy,
Published: 2 August 2022
Aneuploidy is a pervasive feature of cancer cells that results from chromosome missegregation. Several transcription factors have been associated with aneuploidy; however, no studies to date have demonstrated that mammalian transcription factors directly regulate chromosome segregation during mitosis. Here, we demonstrate that the ubiquitously expressed transcription factor specificity protein 1 (Sp1), which we have previously linked to aneuploidy, has a mitosis-specific role regulating chromosome segregation. We find that Sp1 localizes to mitotic centromeres and auxin-induced rapid Sp1 degradation at mitotic onset results in chromosome segregation errors and aberrant mitotic progression. Furthermore, rapid Sp1 degradation results in anomalous mitotic chromosome assembly characterized by loss of condensin complex I localization to mitotic chromosomes and chromosome condensation defects. Consistent with these defects, Sp1 degradation results in reduced chromosome passenger complex activity and histone H3 serine 10 phosphorylation during mitosis, which is essential for condensin complex I recruitment and chromosome condensation. Together, these data provide the first evidence of a mammalian transcription factor acting specifically during mitosis to regulate chromosome segregation.
Hadeel T. Zedan, Fatma H. Ali,
Published: 30 July 2022
Chromosomal translocations (CTs) are the most common type of structural chromosomal abnormalities in humans. CTs have been reported in several studies in the Arab world, but the frequency and spectrum of these translocations are not well characterized. The aim of this study is to conduct a systematic review to estimate the frequency and spectrum of CTs in the 22 Arab countries. Four literature databases were searched: PubMed, Science Direct, Scopus, and Web of Science, from the time of inception until July 2021. A combination of broad search terms was used to collect all possible CTs reported in the Arab world. In addition to the literature databases, all captured CTs were searched in three chromosomal rearrangement databases (Mitelman Database, CytoD 1.0 Database, and the Atlas of Genetics and Cytogenetics in Oncology and Hematology), along with PubMed and Google Scholar, to check whether the CTs are unique to the Arabs or shared between Arabs and non-Arabs. A total of 9,053 titles and abstracts were screened, of which 168 studies met our inclusion criteria, and 378 CTs were identified in 15 Arab countries, of which 57 CTs were unique to Arab patients. Approximately 89% of the identified CTs involved autosomal chromosomes. Three CTs, t(9;22), t(13;14), and t(14;18), showed the highest frequency, which were associated with hematological malignancies, recurrent pregnancy loss, and follicular lymphoma, respectively. Complex CTs were commonly reported among Arabs, with a total of 44 CTs, of which 12 were unique to Arabs. This is the first study to focus on the spectrum of CTs in the Arab world and compressively map the ethnic-specific CTs relevant to cancer. It seems that there is a distinctive genotype of Arabs with CTs, of which some manifested with unique clinical phenotypes. Although ethnic-specific CTs are highly relevant to disease mechanism, they are understudied and need to be thoroughly addressed.
, Eva Hřibová, Jaroslav Doležel, Ángeles Cuadrado, Frauke Garbsch, Stephan Greiner, Monika Janeczko, Marek Szklarczyk, Maciej Masłyk, Konrad Kubiński
Published: 27 July 2022
Due to translocation heterozygosity for all chromosomes in the cell complement, the oyster plant (Tradescantia spathacea) forms a complete meiotic ring. It also shows Rabl-arrangement at interphase, featured by polar centromere clustering. We demonstrate that the pericentromeric regions of the oyster plant are homogenized in concert by three subtelomeric sequences: 45S rDNA, (TTTAGGG)n motif, and TSrepI repeat. The Rabl-based clustering of pericentromeric regions may have been an excellent device to combine the subtelomere-pericentromere sequence migration (via inversions) with the pericentromere-pericentromere DNA movement (via whole arm translocations) that altogether led to the concerted homogenization of all the pericentromeric domains by the subtelomeric sequences. We also show that the repetitive sequence landscape of interstitial chromosome regions contains many loci consisting of Arabidopsis-type telomeric sequence or of TSrepI repeat, and it is extensively heterozygous. However, the sequence arrangement on some chromosomal arms suggest segmental inversions that are fully or partially homozygous, a fact that could be explained if the inversions started to create linkages already in a bivalent-forming ancestor. Remarkably, the subterminal TSrepI loci reside exclusively on the longer arms that could be due to sharing sequences between similarly-sized chromosomal arms in the interphase nucleus. Altogether, our study spotlights the supergene system of the oyster plant as an excellent model to link complex chromosome rearrangements, evolution of repetitive sequences, and nuclear architecture.
Daniela Quezada-Martinez, Jun Zou, Wenshan Zhang, Jinling Meng, ,
Published: 5 May 2022
In the Brassica genus, we find both diploid species (one genome) and allotetraploid species (two different genomes) but no naturally occurring hexaploid species (three different genomes, AABBCC). Although hexaploids can be produced via human intervention, these neo-polyploids have quite unstable genomes and usually suffer from severe genome reshuffling. Whether these genome rearrangements continue in later generations and whether genomic arrangements follow similar, reproducible patterns between different lineages is still unknown. We crossed Brassica hexaploids resulting from different species combinations to produce five F1 hybrids and analyzed the karyotypes of the parents and the F1 hybrids, as well as allele segregation in a resulting test-cross population via molecular karyotyping using SNP array genotyping. Although some genomic regions were found to be more likely to be duplicated, deleted, or rearranged, a consensus pattern was not shared between genotypes. Brassica hexaploids had a high tolerance for fixed structural rearrangements, but which rearrangements occur and become fixed over many generations does not seem to show either strong reproducibility or to indicate selection for stability. On average, we observed 10 de novo chromosome rearrangements contributed almost equally from both parents to the F1 hybrids. At the same time, the F1 hybrid meiosis produced on average 8.6 new rearrangements. Hence, the increased heterozygosity in the F1 hybrid did not significantly improve genome stability in our hexaploid hybrids and might have had the opposite effect. However, hybridization between lineages was readily achieved and may be exploited for future genetics and breeding purposes.
Mila Ilić, Irene C. Zaalberg, ,
Published: 30 April 2022
Advances in genome sequencing have revealed a type of extrachromosomal DNA, historically named double minutes (also referred to as ecDNA), to be common in a wide range of cancer types, but not in healthy tissues. These cancer-associated circular DNA molecules contain one or a few genes that are amplified when double minutes accumulate. Double minutes harbor oncogenes or drug resistance genes that contribute to tumor aggressiveness through copy number amplification in combination with favorable epigenetic properties. Unequal distribution of double minutes over daughter cells contributes to intratumoral heterogeneity, thereby increasing tumor adaptability. In this review, we discuss various models delineating the mechanism of generation of double minutes. Furthermore, we highlight how double minutes are maintained, how they evolve, and discuss possible mechanisms driving their elimination.
, Ning Zhong, Ya-Lan Wei
Published: 18 April 2022
Chromosoma, Volume 131, pp 87-105;

The publisher has not yet granted permission to display this abstract.
Audrey Lejart, Siham Zentout, Catherine Chapuis, Ostiane D’Augustin, Rebecca Smith, ,
Published: 2 March 2022
Chromosoma, Volume 131, pp 47-58;

The publisher has not yet granted permission to display this abstract.
Back to Top Top