Journal Information
ISSN / EISSN : 19326203 / 19326203
Current Publisher: Public Library of Science (PLoS) (10.1371)
Total articles ≅ 227,527
Google Scholar h5-index: 180
Current Coverage
SCOPUS
PUBMED
MEDLINE
MEDICUS
PMC
SCIE
LOCKSS
DOAJ
Archived in
SHERPA/ROMEO
EBSCO
Filter:

Latest articles in this journal

Crystal Garae, Kalkoa Kalo, George Junior Pakoa, Rohan Baker, Phill Isaacs, Douglas Spencer Millar
Published: 17 January 2020
PLOS ONE, Volume 15; doi:10.1371/journal.pone.0227550

Abstract:The family flaviviridae and alphaviridae contain a diverse group of pathogens that cause significant morbidity and mortality worldwide. Diagnosis of the virus responsible for disease is essential to ensure patients receive appropriate clinical management. Very few real-time RT-PCR based assays are able to detect the presence of all members of these families using a single primer and probe set. We have developed a novel chemistry, 3base, which simplifies the viral nucleic acids allowing the design of RT-PCR assays capable of pan-family identification. Synthetic constructs, viral nucleic acids, intact viral particles and characterised reference materials were used to determine the specificity and sensitivity of the assays. Synthetic constructs demonstrated the sensitivities of the pan-flavivirus detection component were in the range of 13 copies per PCR. The pan-alphavirus assay had a sensitivity range of 10–25 copies per reaction depending on the viral strain. Lower limit of detection studies using whole virus particles demonstrated that sensitivity for assays was in the range of 1–2 copies per reaction. No cross reactivity was observed with a number of commonly encountered viral strains. Proficiency panels showed 100% concordance with the expected results and the assays performed as well as, if not better than, other assays used in laboratories worldwide. After initial assay validation the pan-viral assays were then tested during the 2016–2017 Vanuatu dengue-2 outbreak. Positive results were detected in 116 positives from a total of 187 suspected dengue samples. The pan-viral screening assays described here utilise a novel 3base technology and are shown to provide a sensitive and specific method to screen and thereafter speciate flavi- and/or alpha- viruses in clinical samples. The assays performed well in an outbreak situation and can be used to detect positive clinical samples containing any flavivirus or alphavirus in approximately 3 hours 30 minutes.
Krisstopher Richard Flores, Fausta Viccaro, Mauro Aquilini, Stefania Scarpino, Francesco Ronchetti, Rita Mancini, Arianna Di Napoli, Davide Scozzi, Alberto Ricci
Published: 17 January 2020
PLOS ONE, Volume 15; doi:10.1371/journal.pone.0227834

Abstract:Obstructive sleep apnea syndrome (OSAS) is a common disorder characterized by repeated episodes of upper airways collapse during the sleep. The following intermittent hypoxia triggers a state of chronic inflammation, which also interests the nervous system leading to neuronal damage and increased risk of cognitive impairment. Brain derived neurotrophic factor (BDNF) is a growth factor often associated with neuroplasticity and neuroprotection whose levels increase in several condition associated with neuronal damage. However, whether patients affected by OSAS have altered BDNF levels and whether such alteration may be reflective of their cognitive impairment is still controversial. Here we show that, when compared to healthy control volunteers, OSAS patients have increased serum levels of BDNF. Moreover, OSAS patients with the higher levels of BDNF also have reduced neurocognitive impairment as measured by The Montreal Cognitive Assessment (MoCA) questionnaire. Treatment with standard non-invasive mechanical ventilation (CPAP) also was able to ameliorate the level of cognitive impairment. Altogether our results indicate that BDNF levels represent a neuroprotective response to intermittent hypoxia in OSAS patients.
Raman P. Nagarajan, Alisha Goodbla, Emily Graves, Melinda Baerwald, Marcel Holyoak, Andrea Schreier
Published: 17 January 2020
PLOS ONE, Volume 15; doi:10.1371/journal.pone.0227333

Abstract:The valley elderberry longhorn beetle (VELB), Desmocerus californicus dimorphus (Coleoptera: Cerambycidae), is a federally threatened subspecies endemic to the Central Valley of California. The VELB range partially overlaps with that of its morphologically similar sister taxon, the California elderberry longhorn beetle (CELB), Desmocerus californicus californicus (Coleoptera: Cerambycidae). Current surveying methods are limited to visual identification of larval exit holes in the VELB/CELB host plant, elderberry (Sambucus spp.), into which larvae bore and excavate feeding galleries. Unbiased genetic approaches could provide a much-needed complementary approach that has more precision than relying on visual inspection of exit holes. In this study we developed a DNA sequencing-based method for indirect detection of VELB/CELB from frass (insect fecal matter), which can be easily and non-invasively collected from exit holes. Frass samples were collected from 37 locations and the 12S and 16S mitochondrial genes were partially sequenced using nested PCR amplification. Three frass-derived sequences showed 100% sequence identity to VELB/CELB barcode references from museum specimens sequenced for this study. Database queries of frass-derived sequences also revealed high similarity to common occupants of old VELB feeding galleries, including earwigs, flies, and other beetles. Overall, this non-invasive approach is a first step towards a genetic assay that could augment existing VELB monitoring and accurately discriminate between VELB, CELB, and other insects. Furthermore, a phylogenetic analysis of 12S and 16S data from museum specimens revealed evidence for the existence of a previously unrecognized, genetically distinct CELB subpopulation in southern California.
Elif Aplak, Claudia Von Montfort, Lisa Haasler, David Stucki, Bodo Steckel, Andreas S. Reichert, Wilhelm Stahl, Peter Brenneisen
Published: 17 January 2020
PLOS ONE, Volume 15; doi:10.1371/journal.pone.0227926

Abstract:Cerium (Ce) oxide nanoparticles (CNP; nanoceria) are reported to have cytotoxic effects on certain cancerous cell lines, while at the same concentration they show no cytotoxicity on normal (healthy) cells. Redox-active CNP exhibit both selective prooxidative as well as antioxidative properties. The former is proposed to be responsible for impairment of tumor growth and invasion and the latter for rescuing normal cells from reactive oxygen species (ROS)-induced damage. Here we address possible underlying mechanisms of prooxidative effects of CNP in a metastatic human melanoma cell line. Malignant melanoma is the most aggressive form of skin cancer, and once it becomes metastatic the prognosis is very poor. We have shown earlier that CNP selectively kill A375 melanoma cells by increasing intracellular ROS levels, whose basic amount is significantly higher than in the normal (healthy) counterpart, the melanocytes. Here we show that CNP initiate a mitochondrial increase of ROS levels accompanied by an increase in mitochondrial thiol oxidation. Furthermore, we observed CNP-induced changes in mitochondrial bioenergetics, dynamics, and cristae morphology demonstrating mitochondrial dysfunction which finally led to tumor cell death. CNP-induced cell death is abolished by administration of PEG-conjugated catalase. Overall, we propose that cerium oxide nanoparticles mediate cell death via hydrogen peroxide production linked to mitochondrial dysfunction.
Kristen Foley, Darlene McNaughton, Paul Ward
Published: 17 January 2020
PLOS ONE, Volume 15; doi:10.1371/journal.pone.0225794

Abstract:The view that we are in the midst of a global diabetes epidemic has gained considerable ground in recent years and is often linked to the prior ‘obesity epidemic’. This research explored how the diabetes epidemic was represented in United Kingdom (UK) news over the same time period that the obesity epidemic was widely reported. The research was motivated by a sociological interest in how postmodern ‘epidemics’ synergise with each other amidst broader political, economic, moral and sociocultural discourses. We analysed three time-bound samples of UK news articles about diabetes: 1993 (n = 19), 2001 (n = 119) and 2013 (n = 324). Until now, UK media has had the least attention regarding portrayal of diabetes. We adopted an empathically neutral approach and used a dual method approach of inductive thematic analysis and deductive framing analysis. The two methods were triangulated to produce the findings. Framing of diabetes moved from medical in 1993 to behavioural in 2001, then societal in 2013. By 2001 obesity was conceptualised as causal to diabetes, rather than a risk factor. Between 2001 and 2013 portrayals of the modifiable risk factors for diabetes (i.e. diet, exercise and weight) became increasingly technical. Other risk factors like age, family history and genetics faded during 2001 and 2013, while race, ethnicity and culture were positioned as states of ‘high risk’ for diabetes. The notion of an ‘epidemic’ of diabetes ‘powered up’ these concerns from an individual problem to a societal threat in the context of obesity as a well-known health risk. Portraying diabetes and the diabetes epidemic as anticipated consequences of obesity enlivens the heightened awareness to future risks in everyday life brought about during the obesity epidemic. The freeform adoption of the ‘epidemic’ term in contemporary health discourse appears to foster individual and societal dependence on biomedicine, giving it political, economic and divisive utility.
Mattia Bonzanni, Nicolas Rouleau, Michael Levin, David L. Kaplan
Published: 17 January 2020
PLOS ONE, Volume 15; doi:10.1371/journal.pone.0227230

Abstract:Habituation, defined as the reversible decrement of a response during repetitive stimulation, is widely established as a form of non-associative learning. Though more commonly ascribed to neural cells and systems, habituation has also been observed in single aneural cells, although evidence is limited. Considering the generalizability of the habituation process, we tested the degree to which organism-level behavioral and single cell manifestations were similar. Human embryonic kidney (HEK) cells that overexpressed an optogenetic actuator were photostimulated to test the effect of different stimulation protocols on cell responses. Depolarization induced by the photocurrent decreased successively over the stimulation protocol and the effect was reversible upon withdrawal of the stimulus. In addition to frequency- and intensity-dependent effects, the history of stimulations on the cells impacted subsequent depolarization in response to further stimulation. We identified tetraethylammonium (TEA)-sensitive native K+ channels as one of the mediators of this habituation phenotype. Finally, we used a theoretical model of habituation to elucidate some mechanistic aspects of the habituation response. In conclusion, we affirm that habituation is a time- and state-dependent biological strategy that can be adopted also by individual non-neuronal cells in response to repetitive stimuli.
Min Hee Kim, In Jin Ha, Eunok Kim, Kyuseok Kim
Published: 17 January 2020
PLOS ONE, Volume 15; doi:10.1371/journal.pone.0228074

Abstract:Westernized diet and nutritional metabolism are important in acne pathogenesis, especially in adult patients. However, clinical and basic data are lacking. Pattern identification (PI) is a tool that results in a diagnostic conclusion based on a cluster of concurrent symptoms and signs in traditional medicine. Acne can be classified by PI. However, whether the metabolomic profile differs according to the PI of acne is unknown. Metabolomic data would help clarify the pathogenesis of acne. We conducted a cross-sectional study involving 40 healthy controls and 60 subjects with acne. We evaluated androgens, serum lipids, essential amino acids, nonessential amino acids, other amino acids, and pro-inflammatory cytokines of all subjects and compared the metabolomic profiles between acne subjects and healthy controls, and in subgroups according to gender, age, severity, and PI. Dehydroepiandrosterone sulfate and serum fatty acids were significantly higher in female subjects, adolescents, and those with disharmony of the thoroughfare and conception vessels. The total essential and nonessential amino acids were significantly lower in the overall, female, adult, severe, and phlegm-stasis group. The latter group exhibited elevated serum levels of interleukin-1β and -6. This is the first study to investigate serum lipids, amino acids, and cytokines in subjects with acne. We analyzed the differences between metabolomic profiles to determine the diagnostic value of PI. Prospective studies with more patients are needed to confirm the characteristics of each PI and lipidomic data will enrich knowledge concerning lipid mechanism.
Sulema Torres-Ramos, Ricardo A. Salido-Ruiz, Aurora Espinoza-Valdez, Fabiola R. Gómez-Velázquez, Andrés A. González-Garrido, Israel Román-Godínez
Published: 17 January 2020
PLOS ONE, Volume 15; doi:10.1371/journal.pone.0227613

Abstract:Recent studies aiming to facilitate mathematical skill development in primary school children have explored the electrophysiological characteristics associated with different levels of arithmetic achievement. The present work introduces an alternative EEG signal characterization using graph metrics and, based on such features, a classification analysis using a decision tree model. This proposal aims to identify group differences in brain connectivity networks with respect to mathematical skills in elementary school children. The methods of analysis utilized were signal-processing (EEG artifact removal, Laplacian filtering, and magnitude square coherence measurement) and the characterization (Graph metrics) and classification (Decision Tree) of EEG signals recorded during performance of a numerical comparison task. Our results suggest that the analysis of quantitative EEG frequency-band parameters can be used successfully to discriminate several levels of arithmetic achievement. Specifically, the most significant results showed an accuracy of 80.00% (α band), 78.33% (δ band), and 76.67% (θ band) in differentiating high-skilled participants from low-skilled ones, averaged-skilled subjects from all others, and averaged-skilled participants from low-skilled ones, respectively. The use of a decision tree tool during the classification stage allows the identification of several brain areas that seem to be more specialized in numerical processing.
Frank D. Rinkevich
Published: 17 January 2020
PLOS ONE, Volume 15; doi:10.1371/journal.pone.0227264

Abstract:The parasitic mite Varroa destructor and the associated viruses it transmits are responsible for most instances of honey bee colony losses in the United States. As such, beekeepers utilize miticides to control Varroa populations. Widespread resistance has developed to the miticides fluvalinate and coumaphos. However, Varroa has largely maintained susceptibility to amitraz despite a long and extensive use history. Anecdotal reports of reduced amitraz effectiveness have been a widely discussed contemporary issue among commercial beekeepers. Amitraz resistance was measured by in vitro bioassays with technical amitraz as well as Apivar® efficacy tests. Amitraz resistance was evaluated in commercial beekeeping operations in Louisiana, New York, and South Dakota with a long history of amitraz use. This research shows that amitraz remains an effective Varroa control product in many operations. However, apiaries across operations displayed a wide range of amitraz resistance from no resistance to high resistance that resulted in Varroa control failure. The resistance ratios from in vitro amitraz bioassays were correlated with reduced Apivar® efficacy, demonstrating bona fide cases of Varroa control failures due to amitraz resistance. Therefore, amitraz resistance monitoring protocols need to be developed. A resistance monitoring network should be established to ensure the sustainability of miticide use for Varroa control.
Fang Han, Tyler Bonnett, Willa D. Brenowitz, Merilee A. Teylan, Lilah M. Besser, Yen-Chi Chen, Gary Chan, Ke-Gang Cao, Ying Gao, Xiao-Hua Zhou
Published: 17 January 2020
PLOS ONE, Volume 15; doi:10.1371/journal.pone.0227924

Abstract:Previous studies have provided equivocal evidence of antidepressant use on subsequent cognitive impairment; this could be due to inconsistent modeling approaches. Our goals are methodological and clinical. We evaluate the impact of statistical modeling approaches on the associations between antidepressant use and risk of Mild Cognitive Impairment (MCI) in older adults with depression. 716 participants were enrolled. Our primary analysis employed a time-dependent Cox proportional hazards model. We also implemented two fixed-covariate proportional hazards models—one based on having ever used antidepressants during follow-up, and the other restricted to baseline use only. Treating antidepressant use as a time-varying covariate, we found no significant association with incident MCI (HR = 0.92, 95% CI: 0.70, 1.20). In contrast, when antidepressant use was treated as a fixed covariate, we observed a significant association between having ever used antidepressants and lower risk of MCI (HR = 0.40, 95% CI: 0.28, 0.56). However, in the baseline-use only model, the association was non-significant (HR = 0.84, 95% CI: 0.60, 1.17). Our results were dependent upon statistical models and suggest that antidepressant use should be modeled as a time-varying covariate. Using a robust time-dependent analysis, antidepressant use was not significantly associated with incident MCI among cognitively normal persons with depression.