Journal of Neurology, Neurosurgery & Psychiatry

Journal Information
ISSN / EISSN : 0022-3050 / 1468-330X
Published by: BMJ (10.1136)
Total articles ≅ 27,758
Current Coverage
SCOPUS
SCIE
LOCKSS
MEDLINE
PUBMED
MEDICUS
Archived in
EBSCO
SHERPA/ROMEO
Filter:

Latest articles in this journal

Published: 13 September 2021
by BMJ
Journal of Neurology, Neurosurgery & Psychiatry; https://doi.org/10.1136/jnnp-2021-327133

Abstract:
Background Premorbid body mass index, physical activity, diabetes and cardiovascular disease have been associated with an altered risk of developing amyotrophic lateral sclerosis (ALS). There is evidence of shared genetic risk between ALS and lipid metabolism. A very large prospective longitudinal population cohort permits the study of a range of metabolic parameters and the risk of subsequent diagnosis of ALS. Methods The risk of subsequent ALS diagnosis in those enrolled prospectively to the UK Biobank (n=502 409) was examined in relation to baseline levels of blood high and low density lipoprotein (HDL, LDL), total cholesterol, total cholesterol:HDL ratio, apolipoproteins A1 and B (apoA1, apoB), triglycerides, glycated haemoglobin A1c (HbA1c) and creatinine, plus self-reported exercise and body mass index. Results Controlling for age and sex, higher HDL (HR 0.84, 95% CI 0.73 to 0.96, p=0.010) and apoA1 (HR 0.83, 95% CI 0.72 to 0.94, p=0.005) were associated with a reduced risk of ALS. Higher total cholesterol:HDL was associated with an increased risk of ALS (HR 1.17, 95% CI 1.05 to 1.31, p=0.006). In models incorporating multiple metabolic markers, higher LDL or apoB was associated with an increased risk of ALS, in addition to a lower risk with higher HDL or apoA. Coronary artery disease, cerebrovascular disease and increasing age were also associated with an increased risk of ALS. Conclusions The association of HDL, apoA1 and LDL levels with risk of ALS contributes to an increasing body of evidence that the premorbid metabolic landscape may play a role in pathogenesis. Understanding the molecular basis for these changes will inform presymptomatic biomarker development and therapeutic targeting.
Menelaos Pipis, , James M Polke, Roy Poh, Jana Vandrovcova, Matilde Laura, Mariola Skorupinska, Arnaud Jacquier, Raul Juntas-Morales, Philippe Latour, et al.
Published: 13 September 2021
by BMJ
Journal of Neurology, Neurosurgery & Psychiatry; https://doi.org/10.1136/jnnp-2021-327186

Abstract:
Objective Neurofilaments are the major scaffolding proteins for the neuronal cytoskeleton, and variants in NEFH have recently been described to cause axonal Charcot-Marie-Tooth disease type 2CC (CMT2CC). Methods In this large observational study, we present phenotype–genotype correlations on 30 affected and 3 asymptomatic mutation carriers from eight families. Results The majority of patients presented in adulthood with motor-predominant and lower limb-predominant symptoms and the average age of onset was 31.0±15.1 years. A prominent feature was the development of proximal weakness early in the course of the disease. The disease progressed rapidly, unlike other Charcot-Marie-Tooth disease (CMT) subtypes, and half of the patients (53%) needed to use a wheelchair on average 24.1 years after symptom onset. Furthermore, 40% of patients had evidence of early ankle plantarflexion weakness, a feature which is observed in only a handful of CMT subtypes. Neurophysiological studies and MRI of the lower limbs confirmed the presence of a non-length-dependent neuropathy in the majority of patients. All families harboured heterozygous frameshift variants in the last exon of NEFH, resulting in a reading frameshift to an alternate open reading frame and the translation of approximately 42 additional amino acids from the 3' untranslated region (3′-UTR). Conclusions This phenotype–genotype study highlights the unusual phenotype of CMT2CC, which is more akin to spinal muscular atrophy rather than classic CMT. Furthermore, the study will enable more informative discussions on the natural history of the disease and will aid in NEFH variant interpretation in the context of the disease’s unique molecular genetics.
Kathrin Müller, Ki-Wook Oh, Angelica Nordin, Sudhan Panthi, Seung Hyun Kim, Frida Nordin, Axel Freischmidt, Albert C Ludolph, Chang Seok Ki, Karin Forsberg, et al.
Published: 13 September 2021
by BMJ
Journal of Neurology, Neurosurgery & Psychiatry; https://doi.org/10.1136/jnnp-2021-327520

Abstract:
Objective The only identified cause of amyotrophic lateral sclerosis (ALS) are mutations in a number of genes found in familial cases but also in sporadic cases. De novo mutations occurring in a parental gonadal cell, in the zygote or postzygotic during embryonal development can result in an apparently sporadic/isolated case of ALS later in life. We searched for de novo mutations in SOD1 as a cause of ALS. Methods We analysed peripheral-blood exome, genome and Sanger sequencing to identify deleterious mutations in SOD1 in 4000 ALS patients from Germany, South Korea and Sweden. Parental kinship was confirmed using highly polymorphic microsatellite markers across the genome. Medical genealogical and clinical data were reviewed and compared with the literature. Results We identified four sporadic ALS cases with de novo mutations in SOD1. They aggregate in hot-spot codons earlier found mutated in familial cases. Their phenotypes match closely what has earlier been reported in familial cases with pathogenic mutations in SOD1. We also encountered familial cases where de novo mutational events in recent generations may have been involved. Conclusions De novo mutations are a cause of sporadic ALS and may also be underpinning smaller families with few affected ALS cases. It was not possible to ascertain if the origin of the de novo mutations was parental germline, zygotic or postzygotic during embryonal development. All ALS patients should be offered genetic counselling and genetic screening, the challenges of variant interpretation do not outweigh the potential benefits including earlier confirmed diagnosis and possible bespoken therapy.
Joyce R. Chong, Nicholas J. Ashton, Thomas K. Karikari, Tomotaka Tanaka, Michael Schöll, , Kaj Blennow, Christopher P. Chen,
Published: 11 September 2021
by BMJ
Journal of Neurology, Neurosurgery & Psychiatry; https://doi.org/10.1136/jnnp-2021-327370

Abstract:
Discovery and development of clinically useful biomarkers for Alzheimer’s disease (AD) and related dementias have been the focus of recent research efforts. While cerebrospinal fluid and positron emission tomography or MRI-based neuroimaging markers have made the in vivo detection of AD pathology and its consequences possible, the high cost and invasiveness have limited their widespread use in the clinical setting. On the other hand, advances in potentially more accessible blood-based biomarkers had been impeded by lack of sensitivity in detecting changes in markers of the hallmarks of AD, including amyloid-β (Aβ) peptides and phosphorylated tau (P-tau). More recently, however, emerging technologies with superior sensitivity and specificity for measuring Aβ and P-tau have reported high concordances with AD severity. In this focused review, we describe several emerging technologies, including immunoprecipitation-mass spectrometry (IP-MS), single molecule array and Meso Scale Discovery immunoassay platforms, and appraise the current literature arising from their use to identify plaques, tangles and other AD-associated pathology. While there is potential clinical utility in adopting these technologies, we also highlight the further studies needed to establish Aβ and P-tau as blood-based biomarkers for AD, including validation with existing large sample sets, new independent cohorts from diverse backgrounds as well as population-based longitudinal studies. In conclusion, the availability of sensitive and reliable measurements of Aβ peptides and P-tau species in blood holds promise for the diagnosis, prognosis and outcome assessments in clinical trials for AD.
, Philipp Loehrer, Stefanie T. Jost, Shania Heil, , Johanna Herberg, Pia Bachem, Salima Aloui, Alexandra Gronostay, Lisa Klingelhoefer, et al.
Published: 11 September 2021
by BMJ
Journal of Neurology, Neurosurgery & Psychiatry; https://doi.org/10.1136/jnnp-2021-326131

Abstract:
Background The effects of subthalamic stimulation (subthalamic nucleus-deep brain stimulation, STN-DBS) on impulsive and compulsive behaviours (ICB) in Parkinson’s disease (PD) are understudied. Objective To investigate clinical predictors of STN-DBS effects on ICB. Methods In this prospective, open-label, multicentre study in patients with PD undergoing bilateral STN-DBS, we assessed patients preoperatively and at 6-month follow-up postoperatively. Clinical scales included the Questionnaire for Impulsive-Compulsive Disorders in PD-Rating Scale (QUIP-RS), PD Questionnaire-8, Non-Motor Symptom Scale (NMSS), Unified PD Rating Scale in addition to levodopa-equivalent daily dose total (LEDD-total) and dopamine agonists (LEDD-DA). Changes at follow-up were analysed with Wilcoxon signed-rank test and corrected for multiple comparisons (Bonferroni method). We explored predictors of QUIP-RS changes using correlations and linear regressions. Finally, we dichotomised patients into ‘QUIP-RS improvement or worsening’ and analysed between-group differences. Results We included 55 patients aged 61.7 years±8.4 with 9.8 years±4.6 PD duration. QUIP-RS cut-offs and psychiatric assessments identified patients with preoperative ICB. In patients with ICB, QUIP-RS improved significantly. However, we observed considerable interindividual variability of clinically relevant QUIP-RS outcomes as 27.3% experienced worsening and 29.1% an improvement. In post hoc analyses, higher baseline QUIP-RS and lower baseline LEDD-DA were associated with greater QUIP-RS improvements. Additionally, the ‘QUIP-RS worsening’ group had more severe baseline impairment in the NMSS attention/memory domain. Conclusions Our results show favourable ICB outcomes in patients with higher preoperative ICB severity and lower preoperative DA doses, and worse outcomes in patients with more severe baseline attention/memory deficits. These findings emphasise the need for comprehensive non-motor and motor symptoms assessments in patients undergoing STN-DBS. Trial registration number DRKS00006735.
Marco Egle, , , Lukas Pirpamer, Edith Hofer, Marco Duering, James Wason, Robin G Morris, Martin Dichgans, Reinhold Schmidt, et al.
Published: 11 September 2021
by BMJ
Journal of Neurology, Neurosurgery & Psychiatry; https://doi.org/10.1136/jnnp-2021-326571

Abstract:
Objectives It has been suggested that diffusion tensor imaging (DTI) measures sensitive to white matter (WM) damage may predict future dementia risk not only in cerebral small vessel disease (SVD), but also in mild cognitive impairment. To determine whether DTI measures were associated with cognition cross-sectionally and predicted future dementia risk across the full range of SVD severity, we established the International OPtimising mulTImodal MRI markers for use as surrogate markers in trials of Vascular Cognitive Impairment due to cerebrAl small vesseL disease collaboration which included six cohorts. Methods Among the six cohorts, prospective data with dementia incidences were available for three cohorts. The associations between six different DTI measures and cognition or dementia conversion were tested. The additional contribution to prediction of other MRI markers of SVD was also determined. Results The DTI measure mean diffusivity (MD) median correlated with cognition in all cohorts, demonstrating the contribution of WM damage to cognition. Adding MD median significantly improved the model fit compared to the clinical risk model alone and further increased in all single-centre SVD cohorts when adding conventional MRI measures. Baseline MD median predicted dementia conversion. In a study with severe SVD (SCANS) change in MD median also predicted dementia conversion. The area under the curve was best when employing a multimodal MRI model using both DTI measures and other MRI measures. Conclusions Our results support a central role for WM alterations in dementia pathogenesis in all cohorts. DTI measures such as MD median may be a useful clinical risk predictor. The contribution of other MRI markers varied according to disease severity.
Lukoye Atwoli, Abdullah H Baqui, Thomas Benfield, Raffaella Bosurgi, Fiona Godlee, Stephen Hancocks, Richard Horton, Laurie Laybourn-Langton, Carlos Augusto Monteiro, Ian Norman, et al.
Journal of Neurology, Neurosurgery & Psychiatry; https://doi.org/10.1136/jnnp-2021-327837

Journal of Neurology, Neurosurgery & Psychiatry; https://doi.org/10.1136/jnnp-2021-326994

Abstract:
To facilitate biomarker-based detection of neurodegeneration in clinical practice, easy-to-use blood tests for first-line testing would be of great value. Such tests have been developed for Alzheimer’s disease pathology (plasma Aβ42/Aβ40 ratio and phosphorylated tau species), and for neurofilament light (NfL), a more general biomarker for neuroaxonal injury in both acute and chronic neurological conditions has been developed.1 In contrast, it has been difficult to identify biomarkers for psychiatric diseases—none exists to date and the most general biomarker NfL is negative.
Steffen Halbgebauer, Petra Steinacker, , Jochen Weishaupt, , Christine von Arnim, Johannes Dorst, Emily Feneberg, Benjamin Mayer, , et al.
Journal of Neurology, Neurosurgery & Psychiatry; https://doi.org/10.1136/jnnp-2021-327129

Abstract:
Objective Elevated levels of neurofilament light (NfL) and heavy (NfH) chain in amyotrophic lateral sclerosis (ALS) cerebrospinal fluid (CSF) and serum reflect neuro-axonal degeneration and are used as diagnostic biomarkers. However, studies comparing the differential diagnostic potential for ALS of all four parameters are missing. Here, we measured serum NfL/NfH and CSF NfL/NfH in a large cohort of ALS and other neurological disorders and analysed the differential diagnostic potential. Methods In total CSF and serum of 294 patients were analysed. The diagnostic groups comprised: ALS (n=75), frontotemporal lobar degeneration (FTLD) (n=33), Alzheimer’s disease (n=20), Parkinson’s disease (dementia) (n=18), Creutzfeldt-Jakob disease (n=11), non-neurodegenerative controls (n=77) (Con) and 60 patients who were seen under the direct differential diagnosis of a patient with ALS (Con.DD). Results CSF and serum NfL and NfH showed significantly increased levels in ALS (p<0.0001) compared with Con and Con.DD. The difference between ALS and FTLD was markedly stronger for NfH than for NfL. CSF and serum NfL demonstrated a stronger correlation (r=0.84 (95% CI 0.80 to 0.87), p<0.001) than CSF and serum NfH (r=0.68 (95% CI 0.61 to 0.75), p<0.0001). Comparing ALS and Con.DD, receiver operating characteristic analysis revealed the best area under the curve (AUC) value for CSF NfL (AUC=0.94, 95% CI 0.91 to 0.98), followed by CSF NfH (0.93, 95% CI 0.88 to 0.98), serum NfL (0.93, 95% CI 0.89 to 0.97) and serum NfH (0.88, 95% CI 0.82 to 0.94). Conclusion Our results demonstrate that CSF NfL and NfH as well as serum NfL are equally suited for the differential diagnosis of ALS, whereas serum NfH appears to be slightly less potent.
Back to Top Top