Journal Information
ISSN / EISSN : 0950-9232 / 1476-5594
Total articles ≅ 20,966
Current Coverage
Archived in

Latest articles in this journal

Shaobin Huang, Wuguo Deng, Peng Wang, Yue Yan, Chuanbo Xie, Xiaoling Cao, Miao Chen, Changlin Zhang, Dingbo Shi, Yunxian Dong, et al.
Published: 28 July 2021
Oncogene pp 1-13; doi:10.1038/s41388-021-01954-8

We identified fermitin family member 2 (FERMT2, also known as kindlin-2) as a potential target in A375 cell line by siRNA library screening. Drugs that target mutant BRAF kinase lack durable efficacy in the treatment of melanoma because of acquired resistance, thus the identification of novel therapeutic targets is needed. Immunohistochemistry was used to identify kindlin-2 expression in melanoma samples. The interaction between kindlin-2 and Rac1 or p-Rac/Cdc42 guanine nucleotide exchange factor 6 (α-Pix) was investigated. Finally, the tumor suppressive role of kindlin-2 was validated in vitro and in vivo. Analysis of clinical samples and Oncomine data showed that higher levels of kindlin-2 predicted a more advanced T stage and M stage and facilitated metastasis and recurrence. Kindlin-2 knockdown significantly inhibited melanoma growth and migration, whereas kindlin-2 overexpression had the inverse effects. Further study showed that kindlin-2 could specifically bind to p-α-Pix(S13) and Rac1 to induce a switch from the inactive Rac1-GDP conformation to the active Rac1-GTP conformation and then stimulate the downstream MAPK pathway. Moreover, we revealed that a Rac1 inhibitor suppressed melanoma growth and metastasis and the combination of the Rac1 inhibitor and vemurafenib resulted in a better therapeutic outcome than monotherapy in melanoma with high kindlin-2 expression and BRAF mutation. Our results demonstrated that kindlin-2 promoted melanoma progression, which was attributed to specific binding to p-α-Pix(S13) and Rac1 to stimulate the downstream MAPK pathway. Thus, kindlin-2 could be a potential therapeutic target for treating melanoma.
Ming-Xiao Zhang, Li-Zhen Zhang, Liang-Min Fu, Hao-Hua Yao, Lei Tan, Zi-Hao Feng, Jia-Ying Li, Jun Lu, Yi-Hui Pan, Guan-Nan Shu, et al.
Published: 28 July 2021
Oncogene pp 1-12; doi:10.1038/s41388-021-01971-7

Long noncoding RNAs (lncRNAs) have been reported to exert important roles in tumors, including clear cell renal cell carcinoma (ccRCC). PVT1 is an important oncogenic lncRNA which has critical effects on onset and development of various cancers, however, the underlying mechanism of PVT1 functioning in ccRCC remains largely unknown. VHL deficiency-induced HIF2α accumulation is one of the major factors for ccRCC. Here, we identified the potential molecular mechanism of PVT1 in promoting ccRCC development by stabilizing HIF2α. PVT1 was significantly upregulated in ccRCC tissues and high PVT1 expression was associated with poor prognosis of ccRCC patients. Both gain-of-function and loss-of function experiments revealed that PVT1 enhanced ccRCC cells proliferation, migration, and invasion and induced tumor angiogenesis in vitro and in vivo. Mechanistically, PVT1 interacted with HIF2α protein and enhanced its stability by protecting it from ubiquitination-dependent degradation, thereby exerting its biological significance. Meanwhile, HIF2α bound to the enhancer of PVT1 to transactivate its expression. Furthermore, HIF2α specific inhibitor could repress PVT1 expression and its oncogenic functions. Therefore, our study demonstrates that the PVT1/ HIF2α positive feedback loop involves in tumorigenesis and progression of ccRCC, which may be exploited for anticancer therapy.
Yu Zhang, Qian Yan, Lanqi Gong, Hang Xu, Beilei Liu, Xiaona Fang, Dandan Yu, Lei Li, Ting Wei, Ying Wang, et al.
Published: 26 July 2021
Oncogene pp 1-3; doi:10.1038/s41388-021-01942-y

Fumi Seto-Tetsuo, , Koichi Miura, Takeru Inoue, Kazunobu Igawa, Katsuhiko Tomooka, Fumi Takahashi-Yanaga, Toshiyuki Sasaguri
Published: 24 July 2021
Oncogene pp 1-11; doi:10.1038/s41388-021-01958-4

We have previously reported that the differentiation-inducing factor-1 (DIF-1), a compound identified in Dictyostelium discoideum, suppresses the growth of MCF-7 breast cancer cells by inactivating p70 ribosomal protein S6 kinase (p70S6K). Therefore, we first examined whether the same mechanism operates in other breast cancer cells, especially triple-negative breast cancer (TNBC), the most aggressive and refractory phenotype of breast cancer. We also investigated the mechanism by which DIF-1 suppresses p70S6K by focusing on the AMPK-mTORC1 system. We found that DIF-1 induces phosphorylation of AMPK and Raptor and dephosphorylation of p70S6K in multiple TNBC cell lines. Next, we examined whether AMPK-mediated inhibition of p70S6K leads to the suppression of proliferation and migration/infiltration of TNBC cells. DIF-1 significantly reduced the expression levels of cyclin D1 by suppressing the translation of STAT3 and strongly suppressed the expression levels of Snail, which led to the suppression of growth and motility, respectively. Finally, we investigated whether DIF-1 exerts anticancer effects on TNBC in vivo. Intragastric administration of DIF-1 suppressed tumor growth and spontaneous lung metastasis of 4T1-Luc cells injected into the mammary fat pad of BALB/c mice. DIF-1 is expected to lead to the development of anticancer drugs, including anti-TNBC, by a novel mechanism.
Andrada-Maria Birladeanu, Malgorzata Rogalska, Myrto Potiri, Vasiliki Papadaki, Margarita Andreadou, , Joe D. Lewis, Zoi Erpapazoglou,
Published: 23 July 2021
Oncogene pp 1-15; doi:10.1038/s41388-021-01963-7

In response to oncogenic signals, Alternative Splicing (AS) regulators such as SR and hnRNP proteins show altered expression levels, subnuclear distribution and/or post-translational modification status, but the link between signals and these changes remains unknown. Here, we report that a cytosolic scaffold protein, IQGAP1, performs this task in response to heat-induced signals. We show that in gastric cancer cells, a nuclear pool of IQGAP1 acts as a tethering module for a group of spliceosome components, including hnRNPM, a splicing factor critical for the response of the spliceosome to heat-shock. IQGAP1 controls hnRNPM’s sumoylation, subnuclear localisation and the relevant response of the AS machinery to heat-induced stress. Genome-wide analyses reveal that IQGAP1 and hnRNPM co-regulate the AS of a cell cycle-related RNA regulon in gastric cancer cells, thus favouring the accelerated proliferation phenotype of gastric cancer cells. Overall, we reveal a missing link between stress signals and AS regulation.
Lu Wang, Liang Du, Xiao Xiong, Yusheng Lin, Jianlin Zhu, Zhimeng Yao, Shuhong Wang, Yi Guo, Yuping Chen, Kyla Geary, et al.
Published: 23 July 2021
Oncogene pp 1-1; doi:10.1038/s41388-021-01936-w

Flavio R. Palma, Bianca A. Ratti, Veronica Paviani, Diego R. Coelho, Rodrigo Miguel, Jeanne M. Danes, Sofia V. Zaichik, Andre L. de Abreu, , , et al.
Published: 21 July 2021
Oncogene pp 1-13; doi:10.1038/s41388-021-01943-x

Epidemiologic studies in diabetic patients as well as research in model organisms have indicated the potential of metformin as a drug candidate for the treatment of various types of cancer, including breast cancer. To date most of the anti-cancer properties of metformin have, in large part, been attributed either to the inhibition of mitochondrial NADH oxidase complex (Complex I in the electron transport chain) or the activation of AMP-activated kinase (AMPK). However, it is becoming increasingly clear that AMPK activation may be critical to alleviate metabolic and energetic stresses associated with tumor progression suggesting that it may, in fact, attenuate the toxicity of metformin instead of promoting it. Here, we demonstrate that AMPK opposes the detrimental effects of mitochondrial complex I inhibition by enhancing glycolysis at the expense of, and in a manner dependent on, pyruvate availability. We also found that metformin forces cells to rewire their metabolic grid in a manner that depends on AMPK, with AMPK-competent cells upregulating glycolysis and AMPK-deficient cell resorting to ketogenesis. In fact, while the killing effects of metformin were largely rescued by pyruvate in AMPKcompetent cells, AMPK-deficient cells required instead acetoacetate, a product of fatty acid catabolism indicating a switch from sugar to fatty acid metabolism as a central resource for ATP production in these cells. In summary, our results indicate that AMPK activation is not responsible for metformin anticancer activity and may instead alleviate energetic stress by activating glycolysis.
, Kaveh M. Goudarzi, Shiva Abedi, Melanie Pieber, Elin Sjöberg, , Xing-Mei Zhang, Robert A. Harris, Jiri Bartek, , et al.
Published: 13 July 2021
Oncogene pp 1-1; doi:10.1038/s41388-021-01929-9

Rahul Kanumuri, Aruna Kumar Chelluboyina, Jayashree Biswal, Ravichandran Vignesh, Jaishree Pandian, Akkanapally Venu, B. Vaishnavi, Dj. Leena, Jeyakanthan Jeyaraman, Kumaresan Ganesan, et al.
Published: 12 July 2021
Oncogene pp 1-15; doi:10.1038/s41388-021-01927-x

P21 Activated Kinase 1 (PAK1) is an oncogenic serine/threonine kinase known to play a significant role in the regulation of cytoskeleton and cell morphology. Runt-related transcription factor 3 (RUNX3) was initially known for its tumor suppressor function, but recent studies have reported the oncogenic role of RUNX3 in various cancers. Previous findings from our laboratory provided evidence that Threonine 209 phosphorylation of RUNX3 acts as a molecular switch in dictating the tissue-specific dualistic functions of RUNX3 for the first time. Based on these proofs and to explore the translational significance of these findings, we designed a small peptide (RMR) from the protein sequence of RUNX3 flanking the Threonine 209 phosphorylation site. The selection of this specific peptide from multiple possible peptides was based on their binding energies, hydrogen bonding, docking efficiency with the active site of PAK1 and their ability to displace PAK1–RUNX3 interaction in our prediction models. We found that this peptide is stable both in in vitro and in vivo conditions, not toxic to normal cells and inhibits the Threonine 209 phosphorylation in RUNX3 by PAK1. We also tested the efficacy of this peptide to block the RUNX3 Threonine 209 phosphorylation mediated tumorigenic functions in in vitro cell culture models, patient-derived explant (PDE) models and in in vivo tumor xenograft models. These results proved that this peptide has the potential to be developed as an efficient therapeutic molecule for targeting RUNX3 Threonine 209 phosphorylation-dependent tumor phenotypes.
Er-Bin Zhang, Xiuping Zhang, Kang Wang, Fengkun Zhang, Tian-Wei Chen, Ning Ma, Qian-Zhi Ni, Yi-Kang Wang, Qian-Wen Zheng, Hui-Jun Cao, et al.
Published: 10 July 2021
Oncogene pp 1-12; doi:10.1038/s41388-021-01934-y

The prognosis of hepatocellular carcinoma (HCC) remains unsatisfactory due to limited effective treatment options. In this work, we investigated the therapeutic efficacy of Terbinafine for HCC and the underlying mechanism. The influence of Terbinafine on cell growth, 3D spheroid formation, clonogenic survival, and protein synthesis was investigated in human HCC cell lines. Co-immunoprecipitation, immunofluorescence, and other techniques were employed to explore how Terbinafine exerts its anticancer effect. Subcutaneous tumorigenicity assay, orthotopic and patient-derived xenograft (PDX) HCC models were used to evaluate the anticancer effect of Terbinafine monotherapy and the combinatorial treatment with Terbinafine and sorafenib against HCC. The anticancer activity of Terbinafine was Squalene epoxidase (SQLE)-independent. Instead, Terbinafine robustly suppressed the proliferation of HCC cells by inhibiting mTORC1 signaling via activation of AMPK. Terbinafine alone or in combination with sorafenib delayed tumor progression and markedly prolonged the survival of tumor-bearing mice. The synergy between Terbinafine and sorafenib was due to concomitant inhibition of mTORC1 and induction of severe persistent DNA double-strand breaks (DSBs), which led to the delayed proliferation and accelerated cell death. Terbinafine showed promising anticancer efficacy in preclinical models of HCC and may serve as a potential therapeutic strategy for HCC.
Back to Top Top