Atmospheric Measurement Techniques

Journal Information
ISSN / EISSN : 1867-1381 / 1867-8548
Current Publisher: Copernicus GmbH (10.5194)
Total articles ≅ 3,493
Current Coverage
Archived in

Latest articles in this journal

, Hubertus A. Scheeren, Dave D. Nelson, J. Barry McManus, Harro A. J. Meijer
Atmospheric Measurement Techniques, Volume 14, pp 4279-4304; doi:10.5194/amt-14-4279-2021

Using laser absorption spectrometry for the measurement of stable isotopes of atmospheric CO2 instead of the traditional isotope ratio mass spectrometry method decreases sample preparation time significantly, and uncertainties in the measurement accuracy due to CO2 extraction and isobaric interferences are avoided. In this study we present the measurement performance of a new dual-laser instrument developed for the simultaneous measurement of the δ13C, δ18O and δ17O of atmospheric CO2 in discrete air samples, referred to as the Stable Isotopes of CO2 Absorption Spectrometer (SICAS). We compare two different calibration methods: the ratio method, based on the measured isotope ratio and a CO2 mole fraction dependency correction, and the isotopologue method, based on measured isotopologue abundances. Calibration with the ratio method and isotopologue method is based on three different assigned whole-air references calibrated on the VPDB (Vienna Pee Dee Belemnite) and the WMO 2007 (World Meteorological Organization) scale for their stable isotope compositions and their CO2 mole fractions, respectively. An additional quality control tank is included in both methods to follow long-term instrument performance. Measurements of the quality control tank show that the measurement precision and accuracy of both calibration methods is of similar quality for δ13C and δ18O measurements. During one specific measurement period the precision and accuracy of the quality control tank reach WMO compatibility requirements, being 0.01 ‰ for δ13C and 0.05 ‰ for δ18O. Uncertainty contributions of the scale uncertainties of the reference gases add another 0.03 ‰ and 0.05 ‰ to the combined uncertainty of the sample measurements. Hence, reaching WMO compatibility for sample measurements on the SICAS requires reduction of the scale uncertainty of the reference gases used for calibration. An intercomparison of flask samples over a wide range of CO2 mole fractions has been conducted with the Max Planck Institute for Biogeochemistry, resulting in a mean residual of 0.01 ‰ and −0.01 ‰ and a standard deviation of 0.05 ‰ and 0.07 ‰ for the δ13C measurements calibrated using the ratio method and the isotopologue method, respectively. The δ18O could not be compared due to depletion of the δ18O signal in our sample flasks because of storage times being too long. Finally, we evaluate the potential of our Δ17O measurements as a tracer for gross primary production by vegetation through photosynthesis. Here, a measurement precision of <0.01 ‰ would be a prerequisite for capturing seasonal variations in the Δ17O signal. Lowest standard errors for the δ17O and Δ17O of the ratio method and the isotopologue method are 0.02 ‰ and 0.02 ‰ and 0.01 ‰ and 0.02 ‰, respectively. The accuracy results show consequently results that are too enriched for both the δ17O and Δ17O measurements for both methods. This is probably due to the fact that two of our reference gases were not measured directly but were determined indirectly. The ratio method shows residuals ranging from 0.06 ‰ to 0.08 ‰ and from 0.06 ‰ to 0.1 ‰ for the δ17O and Δ17O results, respectively. The isotopologue method shows residuals ranging from 0.04 ‰ to 0.1 ‰ and from 0.05 ‰ to 0.13 ‰ for the δ17O and Δ17O results, respectively. Direct determination of the δ17O of all reference gases would improve the accuracy of the δ17O and thereby of the Δ17O measurements.
Marvin Glowania, Franz Rohrer, Hans-Peter Dorn, , Frank Holland, , ,
Atmospheric Measurement Techniques, Volume 14, pp 4239-4253; doi:10.5194/amt-14-4239-2021

Three instruments that use different techniques to measure gaseous formaldehyde (HCHO) concentrations were compared in experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich. One instrument (AL4021, Aero-Laser GmbH) detects HCHO using the wet-chemical Hantzsch reaction (for efficient gas-phase stripping), chemical conversion and fluorescence measurement. An internal HCHO permeation source allows for daily calibrations. This instrument was characterized by sulfuric acid titration (overall accuracy 8.6 %) and yields measurements with a time resolution of 90 s and a limit of detection (3σ) of 0.3 ppbv. In addition, a new commercial instrument that makes use of cavity ring-down spectroscopy (CRDS) determined the concentrations of HCHO, water vapour, and methane (G2307, Picarro, Inc.). Its limit of detection (3σ) is specified as 0.3 ppbv for an integration time of 300 s, and its accuracy is limited by the drift of the zero signal (manufacturer specification 1.5 ppbv). A custom-built high-resolution laser differential optical absorption spectroscopy (DOAS) instrument provided HCHO measurements with a limit of detection (3σ) of 0.9 ppbv and an accuracy of 7 %​​​​​​​ using an optical multiple reflection cell. The measurements were conducted from June to December 2019 in experiments in which either ambient air flowed through the chamber or the photochemical degradation of organic compounds in synthetic air was investigated. Measured HCHO concentrations were up to 8 ppbv. Various mixtures of organic compounds, water vapour, nitrogen oxides and ozone were present in these experiments. Results demonstrate the need to correct the baseline in measurements performed by the Hantzsch instrument to compensate for drifting background signals. Corrections were equivalent to HCHO mixing ratios in the range of 0.5–1.5 ppbv. The baseline of the CRDS instrument showed a linear dependence on the water vapour mixing ratio with a slope of (-11.20±1.60) ppbv %−1 below and (-0.72±0.08) ppbv %−1 above a water vapour mixing ratio of 0.2 %. In addition, the intercepts of these linear relationships drifted within the specification of the instrument (1.5 ppbv) over time but appeared to be equal for all water mixing ratios. Regular zero measurements are needed to account for the changes in the instrument zero. After correcting for the baselines of measurements by the Hantzsch and the CRDS instruments, linear regression analysis of measurements from all three instruments in experiments with ambient air indicated good agreement, with slopes of between 0.98 and 1.08 and negligible intercepts (linear correlation coefficients R2>0.96). The new small CRDS instrument measures HCHO with good precision and is accurate if the instrument zero is taken into account. Therefore, it can provide measurements with similar accuracy to the DOAS instrument but with slightly reduced precision compared to the Hantzsch instrument.
, , Nicole Bobrowski, Vladimir Conde, Tobias P. Fischer, Gustav Gerdes, Alexandra Gutmann, Thorsten Hoffmann, Ima Itikarai, Tomas Krejci, et al.
Atmospheric Measurement Techniques, Volume 14, pp 4255-4277; doi:10.5194/amt-14-4255-2021

A multi-rotor drone has been adapted for studies of volcanic gas plumes. This adaptation includes improved capacity for high-altitude and long-range, real-time SO2 concentration monitoring, long-range manual control, remotely activated bag sampling and plume speed measurement capability. The drone is capable of acting as a stable platform for various instrument configurations, including multi-component gas analysis system (MultiGAS) instruments for in situ measurements of SO2, H2S, and CO2 concentrations in the gas plume and portable differential optical absorption spectrometer (MobileDOAS) instruments for spectroscopic measurement of total SO2 emission rate, remotely controlled gas sampling in bags and sampling with gas denuders for posterior analysis on the ground of isotopic composition and halogens. The platform we present was field-tested during three campaigns in Papua New Guinea: in 2016 at Tavurvur, Bagana and Ulawun volcanoes, in 2018 at Tavurvur and Langila volcanoes and in 2019 at Tavurvur and Manam volcanoes, as well as in Mt. Etna in Italy in 2017. This paper describes the drone platform and the multiple payloads, the various measurement strategies and an algorithm to correct for different response times of MultiGAS sensors. Specifically, we emphasize the need for an adaptive flight path, together with live data transmission of a plume tracer (such as SO2 concentration) to the ground station, to ensure optimal plume interception when operating beyond the visual line of sight. We present results from a comprehensive plume characterization obtained during a field deployment at Manam volcano in May 2019. The Papua New Guinea region, and particularly Manam volcano, has not been extensively studied for volcanic gases due to its remote location, inaccessible summit region and high level of volcanic activity. We demonstrate that the combination of a multi-rotor drone with modular payloads is a versatile solution to obtain the flux and composition of volcanic plumes, even for the case of a highly active volcano with a high-altitude plume such as Manam. Drone-based measurements offer a valuable solution to volcano research and monitoring applications and provide an alternative and complementary method to ground-based and direct sampling of volcanic gases.
, Olaf N. E. Tuinder, Ping Wang,
Atmospheric Measurement Techniques, Volume 14, pp 4219-4238; doi:10.5194/amt-14-4219-2021

In this paper we introduce the new concept of directionally dependent Lambertian-equivalent reflectivity (DLER) of the Earth's surface retrieved from satellite observations. This surface DLER describes Lambertian (isotropic) surface reflection which is extended with a dependence on the satellite viewing geometry. We apply this concept to data of the GOME-2 satellite instruments to create a global database of the reflectivity of the Earth's surface, providing surface DLER for 26 wavelength bands between 328 and 772 nm as a function of the satellite viewing angle via a second-degree polynomial parameterisation. The resolution of the database grid is 0.25∘ by 0.25∘, but the real, intrinsic spatial resolution varies over the grid from 1.0∘ by 1.0∘ to 0.5∘ by 0.5∘ down to 0.25∘ by 0.25∘ by applying dynamic gridding techniques. The database is based on more than 10 years (2007–2018) of GOME-2 data from the MetOp-A and MetOp-B satellites. The relation between DLER and bi-directional reflectance distribution function (BRDF) surface reflectance is studied using radiative transfer simulations. For the shorter wavelengths (λ500 nm). Based on this outcome, the GOME-2 surface DLER is compared with MODIS surface BRDF data from MODIS band 1 (centred around 645 nm) using both case studies and global comparisons. The conclusion of this validation is that the GOME-2 DLER compares well to MODIS BRDF data and that it does so much better than the non-directional LER database. The DLER approach for describing surface reflectivity is therefore an important improvement over the standard isotropic (non-directional) LER approaches used in the past. The GOME-2 surface DLER database can be used for the retrieval of atmospheric properties from GOME-2 and from previous satellite instruments like GOME and SCIAMACHY. It will also be used to support retrievals from the future Sentinel-5 UVNS (ultraviolet, visible, near-infrared, and short-wave infrared) satellite instrument.
, Herbert Schill, Eliane Maillard Barras, Jörg Klausen, Alexander Haefele
Atmospheric Measurement Techniques, Volume 14, pp 4203-4217; doi:10.5194/amt-14-4203-2021

The longest ozone column measurement series are based on the Dobson sun spectrophotometers developed in the 1920s by Gordon B. W. Dobson. These instruments still constitute an important part of the World Meteorological Organization's global network due to their optical qualities and ruggedness. The primary drawback of this instrument is the effort needed for its manual operation. In industrialized and some less developed countries, most stations have made the choice to replace the Dobson by the automated Brewer sun spectrophotometers, but some are still relying on the Dobson instrument. One of them is the Arosa station where both instrument types are run in parallel. Here, an automated version of the Dobson instrument was developed and implemented recently. In the present paper, the results of the analysis of simultaneous measurements from pairs of Dobson instruments that were either collocated at Arosa or Davos or operated one at each location are presented for four distinct time periods: 1992–2012 – manual vs. manual operation of collocated Dobson instruments (MMC); 2012–2013 – manual vs. automated operation of collocated Dobson instruments (MAC); 2012–2019 – automated vs. automated operation of collocated Dobson instruments (AAC); 2016–2019 – automated vs. automated operation of distant Dobson instruments (AAD). The direct comparison of two instruments using the standard operation procedure during the MMC period gives a metric necessary to validate the automated version of Dobson instruments. The direct comparison of two collocated instruments using the standard manual operation procedure reveals random differences of coincident observations with a standard deviation of ∼ 0.45 % and monthly mean differences between −1.0 % and +0.8 %. In most cases the observed biases are not statistically significant. The same analysis of two automated Dobson instruments yields significantly smaller standard deviation of ∼ 0.25 % and biases of between −0.7 % and 0.8 %. This demonstrates that the repeatability has improved with the automation, while the systematic differences are only marginally smaller. The analysis of the AAD period of coincident measurements from the distant sites Arosa and Davos reveals a small positive bias (not significant) compatible with the 250 m altitude difference. The description of the automated data acquisition and control of the Dobson instrument is presented in a separate paper (Stübi et al., 2020).
Dimitrios Bousiotis, , Molly Haugen, David C. S. Beddows, Sebastián Diez, Killian L. Murphy, , Adam Boies, ,
Atmospheric Measurement Techniques, Volume 14, pp 4139-4155; doi:10.5194/amt-14-4139-2021

Measurement and source apportionment of atmospheric pollutants are crucial for the assessment of air quality and the implementation of policies for their improvement. In most cases, such measurements use expensive regulatory-grade instruments, which makes it difficult to achieve wide spatial coverage. Low-cost sensors may provide a more affordable alternative, but their capability and reliability in separating distinct sources of particles have not been tested extensively yet. The present study examines the ability of a low-cost optical particle counter (OPC) to identify the sources of particles and conditions that affect particle concentrations at an urban background site in Birmingham, UK. To help evaluate the results, the same analysis is performed on data from a regulatory-grade instrument (SMPS, scanning mobility particle sizer) and compared to the outcomes from the OPC analysis. The analysis of the low-cost sensor data manages to separate periods and atmospheric conditions according to the level of pollution at the site. It also successfully identifies a number of sources for the observed particles, which were also identified using the regulatory-grade instruments. The low-cost sensor, due to the particle size range measured (0.35 to 40 µm), performed rather well in differentiating sources of particles with sizes greater than 1 µm, though its ability to distinguish their diurnal variation, as well as to separate sources of smaller particles, at the site was limited. The current level of source identification demonstrated makes the technique useful for background site studies, where larger particles with smaller temporal variations are of significant importance. This study highlights the current capability of low-cost sensors in source identification and differentiation using clustering approaches. Future directions towards particulate matter source apportionment using low-cost OPCs are highlighted.
, Thomas von Clarmann, , , Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Anne Kleinert, Alexandra Laeng, Andrea Linden, et al.
Atmospheric Measurement Techniques, Volume 14, pp 4111-4138; doi:10.5194/amt-14-4111-2021

A new global set of atmospheric temperature profiles is retrieved from recalibrated radiance spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Changes with respect to previous data versions include a new radiometric calibration considering the time dependency of the detector nonlinearity and a more robust frequency calibration scheme. Temperature is retrieved using a smoothing constraint, while tangent altitude pointing information is constrained using optimal estimation. ECMWF ERA-Interim is used as a priori temperature below 43 km. Above, a priori data are based on data from the Whole Atmosphere Community Climate Model Version 4 (WACCM4). Bias-corrected fields from specified dynamics runs, sampled at the MIPAS times and locations, are used, blended with ERA-Interim between 43 and 53 km. Horizontal variability of temperature is considered by scaling an a priori 3D temperature field in the orbit plane in a way that the horizontal structure is provided by the a priori while the vertical structure comes from the measurements. Additional microwindows with better sensitivity at higher altitudes are used. The background continuum is jointly fitted with the target parameters up to 58 km altitude. The radiance offset correction is strongly regularized towards an empirically determined vertical offset profile. In order to avoid the propagation of uncertainties of O3 and H2O a priori assumptions, the abundances of these species are retrieved jointly with temperature. The retrieval is based on HITRAN 2016 spectroscopic data, with a few amendments. Temperature-adjusted climatologies of vibrational populations of CO2 states emitting in the 15 µm region are used in the radiative transfer modeling in order to account for non-local thermodynamic equilibrium. Numerical integration in the radiative transfer model is now performed at higher accuracy. The random component of the temperature uncertainty typically varies between 0.4 and 1 K, with occasional excursions up to 1.3 K above 60 km altitude. The leading sources of the random component of the temperature error are measurement noise, gain calibration uncertainty, spectral shift, and uncertain CO2 mixing ratios. The systematic error is caused by uncertainties in spectroscopic data and line shape uncertainties. It ranges from 0.2 K at 20 km altitude for northern midlatitude summer conditions to 2.3 K at 12 km for tropical conditions. The estimated total uncertainty amounts to values between 0.6 K at 20 km for midlatitude summer conditions to 2.5 K at 12–15 km for tropical conditions. The vertical resolution varies around 3 km for altitudes below 50 km. The long-term drift encountered in the previous temperature product has been largely reduced. The consistency between high spectral resolution results from 2002 to 2004 and the reduced spectral resolution results from 2005 to 2012 has been largely improved. As expected, most pronounced temperature differences between version 8 and previous data versions are found in elevated stratopause situations. The fact that the phase of temperature waves seen by MIPAS is not locked to the wave phase found in ECMWF analyses demonstrates that our retrieval provides independent information and does not merely reproduce the prior information.
Mingyi Wang, , Henning Finkenzeller, , Dexian Chen, Jiali Shen, , Victoria Hofbauer, , , et al.
Atmospheric Measurement Techniques, Volume 14, pp 4187-4202; doi:10.5194/amt-14-4187-2021

Iodine species are important in the marine atmosphere for oxidation and new-particle formation. Understanding iodine chemistry and iodine new-particle formation requires high time resolution, high sensitivity, and simultaneous measurements of many iodine species. Here, we describe the application of a bromide chemical ionization mass spectrometer (Br-CIMS) to this task. During the iodine oxidation experiments in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber, we have measured gas-phase iodine species and sulfuric acid using two Br-CIMS, one coupled to a Multi-scheme chemical IONization inlet (Br-MION-CIMS) and the other to a Filter Inlet for Gasses and AEROsols inlet (Br-FIGAERO-CIMS). From offline calibrations and intercomparisons with other instruments, we have quantified the sensitivities of the Br-MION-CIMS to HOI, I2, and H2SO4 and obtained detection limits of 5.8 × 106, 3.8 × 105, and 2.0 × 105 molec. cm−3, respectively, for a 2 min integration time. From binding energy calculations, we estimate the detection limit for HIO3 to be 1.2 × 105 molec. cm−3, based on an assumption of maximum sensitivity. Detection limits in the Br-FIGAERO-CIMS are around 1 order of magnitude higher than those in the Br-MION-CIMS; for example, the detection limits for HOI and HIO3 are 3.3 × 107 and 5.1 × 106 molec. cm−3, respectively. Our comparisons of the performance of the MION inlet and the FIGAERO inlet show that bromide chemical ionization mass spectrometers using either atmospheric pressure or reduced pressure interfaces are well-matched to measuring iodine species and sulfuric acid in marine environments.
, , Thomas Ulich, , Mark Lester, Bernd Kaifler
Atmospheric Measurement Techniques, Volume 14, pp 4157-4169; doi:10.5194/amt-14-4157-2021

For 2 decades, meteor radars have been routinely used to monitor atmospheric temperature around 90 km altitude. A common method, based on a temperature gradient model, is to use the height dependence of meteor decay time to obtain a height-averaged temperature in the peak meteor region. Traditionally this is done by fitting a linear regression model in the scattered plot of log⁡10(1/τ) and height, where τ is the half-amplitude decay time of the received signal. However, this method was found to be consistently biasing the slope estimate. The consequence of such a bias is that it produces a systematic offset in the estimated temperature, thus requiring calibration with other co-located measurements. The main reason for such a biasing effect is thought to be due to the failure of the classical regression model to take into account the measurement error in τ and the observed height. This is further complicated by the presence of various geophysical effects in the data, as well as observational limitation in the measuring instruments. To incorporate various error terms in the statistical model, an appropriate regression analysis for these data is the errors-in-variables model. An initial estimate of the slope parameter is obtained by assuming symmetric error variances in normalised height and log⁡10(1/τ). This solution is found to be a good prior estimate for the core of this bivariate distribution. Further improvement is achieved by defining density contours of this bivariate distribution and restricting the data selection process within higher contour levels. With this solution, meteor radar temperatures can be obtained independently without needing any external calibration procedure. When compared with co-located lidar measurements, the systematic offset in the estimated temperature is shown to have reduced to 5 % or better on average.
, Julian Schade, Robert Irsig, , Xue Li, Zhen Zhou, Thomas Adam, Ralf Zimmermann
Atmospheric Measurement Techniques, Volume 14, pp 4171-4185; doi:10.5194/amt-14-4171-2021

Ships are among the main contributors to global air pollution, with substantial impacts on climate and public health. To improve air quality in densely populated coastal areas and to protect sensitive ecosystems, sulfur emission control areas (SECAs) were established in many regions of the world. Ships in SECAs operate with low-sulfur fuels, typically distillate fractions such as marine gas oil (MGO). Alternatively, exhaust gas-cleaning devices (“scrubbers”) can be implemented to remove SO2 from the exhaust, thus allowing the use of cheap high-sulfur residual fuels. Compliance monitoring is established in harbors but is difficult in open water because of high costs and technical limitations. Here we present the first experiments to detect individual ship plumes from distances of several kilometers by single-particle mass spectrometry (SPMS). In contrast to most monitoring approaches that evaluate the gaseous emissions, such as manned or unmanned surveillance flights, sniffer technologies and remote sensing, we analyze the metal content of individual particles which is conserved during atmospheric transport. We optimized SPMS technology for the evaluation of residual fuel emissions and demonstrate their detection in a SECA. Our experiments show that ships with installed scrubbers can emit PM emissions with health-relevant metals in quantities high enough to be detected from more than 10 km distance, emphasizing the importance of novel exhaust-cleaning technologies and cleaner fuels. Because of the unique and stable signatures, the method is not affected by urban background. With this study, we establish a route towards a novel monitoring protocol for ship emissions. Therefore, we present and discuss mass spectral signatures that indicate the particle age and thus the distance to the source. By matching ship transponder data, measured wind data and air mass back trajectories, we show how real-time SPMS data can be evaluated to assign distant ship passages.
Back to Top Top