ACS Central Science

Journal Information
ISSN / EISSN : 2374-7943 / 2374-7951
Published by: American Chemical Society (ACS) (10.1021)
Total articles ≅ 1,384
Current Coverage
SCOPUS
SCIE
PUBMED
PMC
DOAJ
COMPENDEX
Archived in
SHERPA/ROMEO
Filter:

Latest articles in this journal

Yuan Ren, Wenhe Xie, Yanyan Li, Junhao Ma, Jichun Li, Yan Liu, Yidong Zou,
Abstract:
Mesoporous materials have been extensively studied for various applications due to their high specific surface areas and well-interconnected uniform nanopores. Great attention has been paid to synthesizing stable functional mesoporous metal oxides for catalysis, energy storage and conversion, chemical sensing, and so forth. Heteroatom doping and surface modification of metal oxides are typical routes to improve their performance. However, it still remains challenging to directly and conveniently synthesize mesoporous metal oxides with both a specific functionalized surface and heteroatom-doped framework. Here, we report a one-step multicomponent coassembly to synthesize Pt nanoparticle-decorated Si-doped WO3 nanowires interwoven into 3D mesoporous superstructures (Pt/Si-WO3 NWIMSs) by using amphiphilic poly(ethylene oxide)-block-polystyrene (PEO-b-PS), Keggin polyoxometalates (H4SiW12O40) and hydrophobic (1,5-cyclooctadiene)dimethylplatinum(II) as the as structure-directing agent, tungsten precursor and platinum source, respectively. The Pt/Si-WO3 NWIMSs exhibit a unique mesoporous structure consisting of 3D interwoven Si-doped WO3 nanowires with surfaces homogeneously decorated by Pt nanoparticles. Because of the highly porous structure, excellent transport of carriers in nanowires, and rich WO3/Pt active interfaces, the semiconductor gas sensors based on Pt/Si-WO3 NWIMSs show excellent sensing properties toward ethanol at low temperature (100 °C) with high sensitivity (S = 93 vs 50 ppm), low detection limit (0.5 ppm), fast response–recovery speed (17–7 s), excellent selectivity, and long-term stability.
Yungchieh Lai, Nicholas B. Watkins, Alonso Rosas-Hernández, Arnaud Thevenon, Gavin P. Heim, Lan Zhou, Yueshen Wu, Jonas C. Peters, ,
Abstract:
Boundary conditions for catalyst performance in the conversion of common precursors such as N2, O2, H2O, and CO2 are governed by linear free energy and scaling relationships. Knowledge of these limits offers an impetus for designing strategies to alter reaction mechanisms to improve performance. Typically, experimental demonstrations of linear trends and deviations from them are composed of a small number of data points constrained by inherent experimental limitations. Herein, high-throughput experimentation on 14 bulk copper bimetallic alloys allowed for data-driven identification of a scaling relationship between the partial current densities of methane and C2+ products. This strict dependence represents an intrinsic limit to the Faradaic efficiency for C–C coupling. We have furthermore demonstrated that coating the electrodes with a molecular film breaks the scaling relationship to promote C2+ product formation.
Amit A. Nagarkar, Samuel E. Root, , Alexei S. Ten, Brian J. Cafferty, Douglas S. Richardson, ,
Abstract:
The rapidly increasing use of digital technologies requires the rethinking of methods to store data. This work shows that digital data can be stored in mixtures of fluorescent dye molecules, which are deposited on a surface by inkjet printing, where an amide bond tethers the dye molecules to the surface. A microscope equipped with a multichannel fluorescence detector distinguishes individual dyes in the mixture. The presence or absence of these molecules in the mixture encodes binary information (i.e., “0” or “1”). The use of mixtures of molecules, instead of sequence-defined macromolecules, minimizes the time and difficulty of synthesis and eliminates the requirement of sequencing. We have written, stored, and read a total of approximately 400 kilobits (both text and images) with greater than 99% recovery of information, written at an average rate of 128 bits/s (16 bytes/s) and read at a rate of 469 bits/s (58.6 bytes/s).
Abstract:
The extraction and subsequent separation of individual rare earth elements (REEs) from REE-bearing feedstocks represent a challenging yet essential task for the growth and sustainability of renewable energy technologies. As an important step toward overcoming the technical and environmental limitations of current REE processing methods, we demonstrate a biobased, all-aqueous REE extraction and separation scheme using the REE-selective lanmodulin protein. Lanmodulin was conjugated onto porous support materials using thiol-maleimide chemistry to enable tandem REE purification and separation under flow-through conditions. Immobilized lanmodulin maintains the attractive properties of the soluble protein, including remarkable REE selectivity, the ability to bind REEs at low pH, and high stability over numerous low-pH adsorption/desorption cycles. We further demonstrate the ability of immobilized lanmodulin to achieve high-purity separation of the clean-energy-critical REE pair Nd/Dy and to transform a low-grade leachate (0.043 mol % REEs) into separate heavy and light REE fractions (88 mol % purity of total REEs) in a single column run while using ∼90% of the column capacity. This ability to achieve, for the first time, tandem extraction and grouped separation of REEs from very complex aqueous feedstock solutions without requiring organic solvents establishes this lanmodulin-based approach as an important advance for sustainable hydrometallurgy.
Zefan Li, Jing Zhang,
Published: 29 September 2021
Abstract:
Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is a nucleotide sugar used by glycosyltransferases to synthesize glycoproteins, glycosaminoglycans, glycolipids, and glycoRNA. UDP-GlcNAc also serves as the donor substrate for forming O-GlcNAc, a dynamic intracellular protein modification involved in diverse signaling and disease processes. UDP-GlcNAc is thus a central metabolite connecting nutrition, metabolism, signaling, and disease. There is a great interest in monitoring UDP-GlcNAc in biological systems. Here, we present the first genetically encoded, green fluorescent UDP-GlcNAc sensor (UGAcS), an optimized insertion of a circularly permuted green fluorescent protein (cpGFP) into an inactive mutant of an Escherichia coli UDP-GlcNAc transferase, for ratiometric monitoring of UDP-GlcNAc dynamics in live mammalian cells. Although UGAcS responds to UDP-GlcNAc quite selectively among various nucleotide sugars, UDP and uridine triphosphate (UTP) interfere with the response. We thus developed another biosensor named UXPS, which is responsive to UDP and UTP but not UDP-GlcNAc. We demonstrated the use of the biosensors to follow UDP-GlcNAc levels in cultured mammalian cells perturbed with nutritional changes, pharmacological inhibition, and knockdown or overexpression of key enzymes in the UDP-GlcNAc synthesis pathway. We further utilized the biosensors to monitor UDP-GlcNAc concentrations in pancreatic MIN6 β-cells under various culture conditions.
Back to Top Top