Neurology - Neuroimmunology Neuroinflammation

Journal Information
ISSN / EISSN : 23327812 / 23327812
Current Publisher: Ovid Technologies (Wolters Kluwer Health) (10.1212)
Total articles ≅ 625
Current Coverage
Archived in

Latest articles in this journal

Kristen M. Krysko, Sara C. Lahue, Annika Anderson, Alice Rutatangwa, William Rowles, Ryan D. Schubert, Jacqueline Marcus, Claire S. Riley, Carolyn Bevan, Thomas W. Hale, et al.
Neurology - Neuroimmunology Neuroinflammation, Volume 7; doi:10.1212/nxi.0000000000000637

Abstract:Objective To determine the transfer of rituximab, an anti-CD20 monoclonal antibody widely used for neurologic conditions, into mature breast milk.Methods Breast milk samples were collected from 9 women with MS who received rituximab 500 or 1,000 mg intravenous once or twice while breastfeeding from November 2017 to April 2019. Serial breast milk samples were collected before infusion and at 8 hours, 24 hours, 7 days, and 18–21 days after rituximab infusion in 4 patients. Five additional patients provided 1–2 samples at various times after rituximab infusion.Results The median average rituximab concentration in mature breast milk was low at 0.063 μg/mL (range 0.046–0.097) in the 4 patients with serial breast milk collection, with an estimated median absolute infant dose of 0.0094 mg/kg/d and a relative infant dose (RID) of 0.08% (range 0.06%–0.10%). Most patients had a maximum concentration at 1–7 days after infusion. The maximum concentration occurred in a woman with a single breast milk sample and was 0.29 μg/mL at 11 days postinfusion, which corresponds with an estimated RID of 0.33%. Rituximab concentration in milk was virtually undetectable by 90 days postinfusion.Conclusions We determined minimal transfer of rituximab into mature breast milk. The RID for rituximab was less than 0.4% and well below theoretically acceptable levels of less than 10%. Low oral bioavailability would probably also limit the absorption of rituximab by the newborn. In women with serious autoimmune neurologic conditions, monoclonal antibody therapy may afford an acceptable benefit to risk ratio, supporting both maternal treatment and breastfeeding.
Leoni Rolfes, Steffen Pfeuffer, Tobias Ruck, Susanne Windhagen, Ilske Oschlies, Hermann-Joseph Pavenstädt, Linus Angenendt, Heinz Wiendl, Julia Krämer, Sven G. Meuth
Neurology - Neuroimmunology Neuroinflammation, Volume 7; doi:10.1212/nxi.0000000000000638

Kiel M. Telesford, Ulrike W. Kaunzner, Jai Perumal, Susan A. Gauthier, Xian Wu, Ivan Diaz, Mason Kruse-Hoyer, Casey Engel, Melanie Marcille, Timothy Vartanian
Neurology - Neuroimmunology Neuroinflammation, Volume 7; doi:10.1212/nxi.0000000000000634

Abstract:Objective To determine the influence of self-reported Black African and Latin American identity on peripheral blood antibody-secreting cell (ASC) frequency in the context of relapsing-remitting MS.Methods In this cross-sectional study, we recruited 74 subjects with relapsing-remitting MS and 24 age-, and self-reported ethno-ancestral identity-matched healthy donors (HDs) to provide peripheral blood study samples. Subjects with MS were either off therapy at the time of study draw or on monthly natalizumab therapy infusions. Using flow cytometry, we assessed peripheral blood mononuclear cells for antibody-secreting B-cell subsets.Results When stratified by self-reported ethno-ancestry, we identified significantly elevated frequencies of circulating plasmablasts among individuals with MS identifying as Black African or Latin American relative to those of Caucasian ancestry. Ethno-ancestry–specific differences in ASC frequency were observed only among individuals with MS. By contrast, this differential was not observed among HDs. ASCs linked with poorer MS prognosis and active disease, including IgM+- and class-switched CD138+ subsets, were among those significantly increased.Conclusion The enhanced peripheral blood plasmablast signature revealed among Black African or Latin American subjects with MS points to distinct underlying mechanisms associated with MS immunopathogenesis. This dysregulation may contribute to the disease disparity experienced by patient populations of Black African or Latin American ethno-ancestry.
Heinz Wiendl, Matthew Carraro, Giancarlo Comi, Guillermo Izquierdo, Ho Jin Kim, Basil Sharrack, Carlo Tornatore, Nadia Daizadeh, Luke Chung, Alan K. Jacobs, et al.
Neurology - Neuroimmunology Neuroinflammation, Volume 7; doi:10.1212/NXI.0000000000000635

Abstract:To examine the association between peripheral blood lymphocyte pharmacodynamics and autoimmune adverse events (AEs) or return of disease activity in alemtuzumab-treated patients with relapsing-remitting MS. Patients received 2 alemtuzumab courses (12 mg/d IV; 5 days at baseline, 3 days 12 months later) in the 2-year Comparison of Alemtuzumab and Rebif Efficacy in Multiple Sclerosis studies (NCT00530348 and NCT00548405) and could then receive as-needed alemtuzumab or other disease-modifying therapy in a 4-year extension (NCT00930553). Lymphocytes were phenotyped quarterly over 2 years using fluorescence-activated cell sorting. Pharmacodynamic assessments included counts of total lymphocytes, CD3+ T cells, CD4+/CD8+ T cells (total/naive/memory/regulatory [Treg]), and CD19+ B cells (total/immature/mature/memory) and ratios of CD19+ (total/immature/mature/memory) to Treg (CD4+/CD8+) counts. Assessed autoimmune AEs included immune thrombocytopenia, nephropathies, and thyroid events. Efficacy assessments included relapses, 6-month confirmed disability worsening (CDW), and MRI disease activity. Lymphocyte repopulation patterns, including ratios between distinct lymphocyte subsets (e.g., CD19+ to Treg cell count ratios), showed no significant differences over 2 years in patients developing/not developing autoimmune AEs, relapses, CDW, or MRI activity through 6 years following alemtuzumab. Lymphocyte kinetics were also unrelated to multiple autoimmune AEs or extreme clinical phenotypes. Repopulation kinetics of the evaluated peripheral lymphocyte subsets did not predict autoimmune AE occurrence or disease activity, including return of disease activity after 2 alemtuzumab courses. Further study is needed to investigate potential antigen-level markers of treatment response.
Josep Dalmau
Neurology - Neuroimmunology Neuroinflammation, Volume 6; doi:10.1212/nxi.0000000000000630

Tianrong Yeo, Fay Probert, Maciej Jurynczyk, Megan Sealey, Ana Cavey, Timothy D.W. Claridge, Mark Woodhall, Patrick Waters, Maria Isabel Leite, Daniel C. Anthony, et al.
Neurology - Neuroimmunology Neuroinflammation, Volume 6; doi:10.1212/nxi.0000000000000626

Abstract:To determine whether unsupervised principal component analysis (PCA) of comprehensive clinico-radiologic data can identify phenotypic subgroups within antibody-negative patients with overlapping features of multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSDs), and to validate the phenotypic classifications using high-resolution nuclear magnetic resonance (NMR) plasma metabolomics with inference to underlying pathologies. Forty-one antibody-negative patients were recruited from the Oxford NMO Service. Thirty-six clinico-radiologic parameters, focusing on features known to distinguish NMOSD and MS, were collected to build an unbiased PCA model identifying phenotypic subgroups within antibody-negative patients. Metabolomics data from patients with relapsing-remitting MS (RRMS) (n = 34) and antibody-positive NMOSD (Ab-NMOSD) (aquaporin-4 antibody n = 54, myelin oligodendrocyte glycoprotein antibody n = 20) were used to identify discriminatory plasma metabolites separating RRMS and Ab-NMOSD. PCA of the 36 clinico-radiologic parameters revealed 3 phenotypic subgroups within antibody-negative patients: an MS-like subgroup, an NMOSD-like subgroup, and a low brain lesion subgroup. Supervised multivariate analysis of metabolomics data from patients with RRMS and Ab-NMOSD identified myoinositol and formate as the most discriminatory metabolites (both higher in RRMS). Within antibody-negative patients, myoinositol and formate were significantly higher in the MS-like vs NMOSD-like subgroup; myoinositol (mean [SD], 0.0023 [0.0002] vs 0.0019 [0.0003] arbitrary units [AU]; p = 0.041); formate (0.0027 [0.0006] vs 0.0019 [0.0006] AU; p = 0.010) (AU). PCA identifies 3 phenotypic subgroups within antibody-negative patients and that the metabolite discriminators of RRMS and Ab-NMOSD suggest that these groupings have some pathogenic meaning. Thus, the identified clinico-radiologic discriminators may provide useful diagnostic clues when seeing antibody-negative patients in the clinic.
Julia Herken, Corinna Bang, Malte C. Rühlemann, Carsten Finke, Johanna Klag, Andre Franke, Harald Prüss
Neurology - Neuroimmunology Neuroinflammation, Volume 6; doi:10.1212/NXI.0000000000000632

Abstract:To determine whether the gut microbiota shows overabundance of commensal bacteria species in patients with anti-NMDA receptor (NMDAR) encephalitis, similar to patients with MS or neuromyelitis optica where they potentially balance pro- and anti-inflammatory immune responses or participate in disease pathogenesis by molecular mimicry. Intestinal microbiota was characterized in patients with NMDAR encephalitis (n = 23, mean age: 34 ± 12.7 years; 21 females) and age/sex/environment-matched healthy controls (n = 24, 40 ± 14.2 years; 22 females) using stool bacteria 16S rDNA sequencing and classification in operational taxonomic units (OTUs). Statistical analyses focused on intraindividual and interindividual bacterial diversity and identification of differentially abundant taxa. Patients with NMDAR encephalitis and controls had similar microbiome profiles of the gut microbiota regarding intraindividual bacterial diversity, OTU distribution, ratio between regional and local species diversity when testing all OTUs, and genera with a relative abundance greater than 0.5%. Similarly, the subgroup of NMDAR encephalitis patients with an ovarian teratoma (n = 3) showed no differences in microbiome variation compared with controls. Patients in the acute encephalitis stage (n = 8) showed significant differences in the numbers of Clostridium XVIII, Clostridium IV, Oscillibacter, Prevotella, and Blautia; however, significance was lost after correction for multiple testing. Patients with NMDAR encephalitis and controls both had a normal gut microbiome. The lack of overabundance of certain bacterial species in patients suggests that microbiome changes are no major contributors to the pathogenesis, disease course, or prognosis in NMDAR encephalitis. Despite the small sample size and heterogeneous groups, findings indicate differences to other neuroimmunologic diseases.
Xiaolu Xu, Qiang Lu, Yan Huang, Siyuan Fan, Lixin Zhou, Jing Yuan, Xunzhe Yang, Haitao Ren, Dawei Sun, Yi Dai, et al.
Neurology - Neuroimmunology Neuroinflammation, Volume 7; doi:10.1212/NXI.0000000000000633

Abstract:To describe the detailed clinical characteristics, immunotherapy, and long-term outcomes of patients with anti-NMDA receptor (NMDAR) encephalitis in China. A single-center, prospective study. Patients who met the diagnostic criteria were enrolled from 2011 to 2017 and followed up. The clinical features, treatment, and long-term outcomes were collected prospectively. Factors affecting the long-term prognosis were analyzed. The study included 220 patients. The most common clinical presentations were psychosis (82.7%) and seizures (80.9%). Of the patients, 19.5% had an underlying neoplasm; of which ovarian teratoma was 100% of tumors in females and only one male had lung cancer. Most patients (99.5%) received first-line therapy (glucocorticoids, IV immunoglobulin, or plasmapheresis alone or combined), and only 7.3% received second-line immunotherapy (rituximab, cyclophosphamide alone, or combined). Long-term immunotherapy (mycophenolate mofetil or azathioprine >1 year) was administered to 53.2% of patients. During the first 12 months, 207 (94.1%) patients experienced improvement, and 5 (2.3%) died, whereas 38 (17.3%) experienced relapses. At 12-month follow-up, 92.7% had favorable clinical outcomes (modified Rankin Scale score ≤2). Patients in China present with psychosis and seizure frequently but have a low percentage of underlying neoplasms. Re-enforced first-line immunotherapy is effective in managing anti-NMDAR encephalitis in the acute phase. Although relapse is relatively common, with combined first-line and long-term immunotherapy, most patients reached favorable outcomes.