Inorganic Chemistry

Journal Information
ISSN / EISSN : 0020-1669 / 1520-510X
Published by: American Chemical Society (ACS) (10.1021)
Total articles ≅ 65,151
Current Coverage
SCOPUS
SCIE
MEDICUS
MEDLINE
PUBMED
Archived in
EBSCO
SHERPA/ROMEO
Filter:

Latest articles in this journal

Xianghe Kong, Kongqiu Hu, Zhiwei Huang, Qunyan Wu, Jipan Yu, , Zhifang Chai, ,
Published: 21 September 2021
Abstract:
Herein we present a new metalloligand, Th6L12 [IHEP-10; L = 4-pyrazolecarboxylic acid (H2PyC)], which can be used to generate a novel multicomponent heterometallic metal–organic framework (MOF), [[Cu3(μ3-OH)(NO3)(H2O)2]2Th6(μ3-O)4(μ3-OH)4(PyC)6(HPyC)6(H2O)6](NO3)2 (IHEP-11), through further assembly with second [Cu3(μ3-OH)(PyC)3] clusters. In IHEP-11, six Cu3 clusters are connected by six NO3– anions to form an unprecedented annular Cu18 cluster, which can be viewed as a 12-connected node to link with 12 Th6 clusters, resulting a 4,12-connected shp net. Benefiting from the cationic framework and 3D porous structure, IHEP-11 can efficiently remove ReO4– (an analogue of radioactive 99TcO4–) from aqueous solution in a wide pH range. This work highlights the feasibility of constructing multicomponent MOFs through a step-by-step synthesis strategy based on metalloligands.
Sabina W. Jaros, Agnieszka Krogul-Sobczak, Barbara Bażanów, Magdalena Florek, Dominik Poradowski, , Urszula Śliwińska-Hill, Alexander M. Kirillov,
Published: 21 September 2021
Abstract:
Coordination polymers have emerged as a new class of potent biologically active agents due to a variety of important characteristics such as the presence of bioactive metal centers and linkers, low toxicity, stability, tailorable structures, and bioavailability. The research on intermediate metabolites has also been explored with implications toward the development of selective anticancer, antimicrobial, and antiviral therapeutic strategies. In particular, quinolinic acid (H2quin) is a recognized metabolite in kynurenine pathway and potent neurotoxic molecule, which has been selected in this study as a bioactive building block for assembling a new silver(I) coordination polymer, [Ag(Hquin)(μ-PTA)]n·H2O (1). This product has been prepared from silver oxide, H2quin, and 1,3,5-triaza-7-phosphaadamantane (PTA), and fully characterized by standard methods including single-crystal X-ray diffraction. Compound 1 has revealed distinctive bioactive features, namely (i) a remarkable antiviral activity against herpes simplex virus type 1 (HSV-1) and adenovirus 36 (Ad-36), (ii) a significant antibacterial activity against clinically important bacteria (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa), and (iii) a selective cytotoxicity against HeLa (human cervix carcinoma) cell line. The present work widens a growing family of bioactive coordination polymers with potent antiviral, antibacterial, and antiproliferative activity.
Izar Capel Berdiell, Daniel J. Davies, Jack Woodworth, Rafal Kulmaczewski, ,
Published: 21 September 2021
Abstract:
Iron(II) complex salts of 2,6-di(1,2,3-triazol-1-yl)pyridine (L1) are unexpectedly unstable in undried solvent. This is explained by the isolation of [Fe(L1)4(H2O)2][ClO4]2 and [Fe(NCS)2(L1)2(H2O)2]·L1, containing L1 bound as a monodentate ligand rather than in the expected tridentate fashion. These complexes associate into 44 grid structures through O–H···N hydrogen bonding; a solvate of a related 44 coordination framework, catena-[Cu(μ-L1)2(H2O)2][BF4]2, is also presented. The isomeric ligands 2,6-di(1,2,3-triazol-2-yl)pyridine (L2) and 2,6-di(1H-1,2,3-triazol-4-yl)pyridine (L3) bind to iron(II) in a more typical tridentate fashion. Solvates of [Fe(L3)2][ClO4]2 are low-spin and diamagnetic in the solid state and in solution, while [Fe(L2)2][ClO4]2 and [Co(L3)2][BF4]2 are fully high-spin. Treatment of L3 with methyl iodide affords 2,6-di(2-methyl-1,2,3-triazol-4-yl)pyridine (L4) and 2-(1-methyl-1,2,3-triazol-4-yl)-6-(2-methyl-1,2,3-triazol-4-yl)pyridine (L5). While salts of [Fe(L5)2]2+ are low-spin in the solid state, [Fe(L4)2][ClO4]2·H2O is high-spin, and [Fe(L4)2][ClO4]2·3MeNO2 exhibits a hysteretic spin transition to 50% completeness at T1/2 = 128 K (ΔT1/2 = 6 K). This transition proceeds via a symmetry-breaking phase transition to an unusual low-temperature phase containing three unique cation sites with high-spin, low-spin, and 1:1 mixed-spin populations. The unusual distribution of the spin states in the low-temperature phase reflects “spin-state frustration” of the mixed-spin cation site by an equal number of high-spin and low-spin nearest neighbors. Gas-phase density functional theory calculations reproduce the spin-state preferences of these and some related complexes. These highlight the interplay between the σ-basicity and π-acidity of the heterocyclic donors in this ligand type, which have opposing influences on the molecular ligand field. The Brønsted basicities of L1–L3 are very sensitive to the linkage isomerism of their triazolyl donors, which explains why their iron complex spin states show more variation than the better-known iron(II)/2,6-dipyrazolylpyridine system.
, , Leire San Felices, , , Estibaliz Ruiz-Bilbao, , María Dm. Vivanco, Amor Haddad,
Published: 21 September 2021
Abstract:
The hybrid compound [Cu(cyclam)(H2O)2]0.5[{Cu(cyclam)}1.5{B-H2As2Mo6O26(H2O)}]·9H2O (1) (cyclam = 1,4,8,11-tetraazacyclotetradecane) was synthesized in aqueous solution by reacting the {Cu(cyclam)}2+ complex with a mixture of heptamolybdate and an arsenate(V) source. Crystal packing of 1 exhibits a supramolecular open-framework built of discrete covalent molybdoarsenate/metalorganic units and additional [Cu(cyclam)(H2O)2]2+ cations, the stacking of which generates squarelike channels parallel to the z axis with an approximate cross section of 10 × 11 Å2 where all the hydration water molecules are hosted. Thermal evacuation of solvent molecules yields a new anhydrous crystalline phase, but compound 1 does not preserve its single-crystalline nature upon heating. However, when crystals are dehydrated under vacuum, they undergo a structural transformation that proceeds via a single-crystal-to-single-crystal pathway, leading to the anhydrous phase [{Cu(cyclam)}2(A-H2As2Mo6O26)] (2). Total dehydration results in important modifications within the inorganic cluster skeleton which reveals an unprecedented solid-state B to A isomerization of the polyoxoanion. This transition also involves changes in the CuII bonding scheme that lead to covalent cluster/metalorganic layers by retaining the open-framework nature of 1. Compound 2 adsorbs ambient moisture upon air exposure, but it does not revert back to 1, and the hydrated phase [{Cu(cyclam)}2(A-H2As2Mo6O26)]·6H2O (2h) is obtained instead. Structural variations between 1 and 2 are reflected in electron paramagnetic resonance spectroscopy measurements, and the permanent microporosity of 2 provides interesting functionalities to the system such as the selective adsorption of gaseous CO2 over N2.
Nathaniel M. Barker, Stephen D. Taylor, Ethan Ferguson, Jeanette A. Krause, Allen G. Oliver, William B. Connick,
Published: 21 September 2021
Abstract:
Solvent plays a vital role in the recrystallization process and resulting crystallinity of materials. This role is of such importance that it can control the stability and utility of materials. In this work, the inclusion of a solvent in the crystalline lattice, specifically water, drastically affects the overall stability of two platinum polymorphs. [Pt(tpy)Cl]BF4 (tpy = 2,2′;6′2″-terpyridine) crystallizes in three forms, red (1R) and blue (1B) polymorphs and a yellow nonsolvated form (2). 1R is the more stable of the two polymorphs, whereas 1B loses crystallinity upon dehydration at ambient conditions resulting in the formation of 2. Close examination of the solid-state extended structures of the two polymorphs reveals that 1R has a lattice arrangement that is more conducive to stronger intermolecular interactions compared to 1B, thereby promoting greater stability. In addition, these two polymorphs exhibit unique vapochromic responses when exposed to various solvents.
, Pin-Wen Huang, Anna A. Kirsanova, , Tsagana B. Sumyanova, Anastasia V. Kharcheva, Evgenii Yu. Khvorostinin, , , Stepan N. Kalmykov, et al.
Published: 21 September 2021
Abstract:
Hybrid donor extractants are a promising class of compounds for the separation of trivalent actinides and lanthanides. Here, we investigated a series of sterically loaded diphosphonate ligands based on bipyridine (BiPy-PO-iPr and BiPy-PO-cHex) and phenanthroline (Phen-PO-iPr and Phen-PO-cHex). We studied their complex formation with nitrates of trivalent f-elements in solvent extraction systems (Am and Eu) and homogeneous acetonitrile solutions (Nd, Eu, and Lu). Phenanthroline extractants demonstrated the highest efficiency and selectivity [SF(Am/Eu) up to 14] toward Am(III) extraction from nitric acid solutions among all of the studied diphosphonates of N-heterocycles. The binding constants established by UV–vis titration also indicated stronger binding of sterically impaired diphosphonates compared to the primary substituted diphosphonates. NMR titration and slope analysis during solvent extraction showed the formation of 2:1 complexes at high concentrations (>10–3 mol/L) for phenanthroline-based ligands. According to UV–vis titrations at low concentrations (10–5–10–6 mol/L), the phenanthroline-based ligands formed 1:1 complexes. Bipyridine-based ligands formed 1:1 complexes regardless of the ligand concentration. Luminescence titrations revealed that the quantum yields of the complexes with Eu(III) were 81 ± 8% (BiPy-PO-iPr) and 93 ± 9% (Phen-PO-iPr). Single crystals of the structures [Lu(μ2,κ4-(iPrO)2P(O)Phen(O)2(OiPr))(NO3)2]2 and Eu(Phen-PO-iPr)(NO3)3 were obtained by chemical synthesis with the Phen-PO-iPr ligand. X-ray diffraction studies revealed a closer contact of the f-element with the aromatic N atoms in the case of sterically loaded P═O ligands compared with sterically deficient ligands. Density functional theory calculations allowed us to rationalize the observed selectivity trends in terms of the bond length, Mayer bond order, and preorganization energy.
Wenjun Rao, Mingli Li, Xiuli You, Zhenhong Wei, Mengxia Zhang, Lingyu Wang,
Published: 21 September 2021
Abstract:
Although research on organic–inorganic hybrid perovskites (OIHPs) has grown exponentially in the past two decades, the high phase transition temperature of OIHP materials is still one of the insurmountable difficulties. Herein, a series of A2BX4 type OIHP materials [(2,n-DFBA)2PbCl4] (n = 3, for 1; n = 4, for 2; n = 5, for 3; n = 6, for 4) have been prepared by reactions of double-substituted difluorobenzylamine (difluorobenzylamine = DFBA) with lead chloride in concentrated HCl aqueous solution. It was found the OIHP compounds 1–3 proceed a switchable phase transition with phase transition temperatures (Tc) at 449 K (1), 462 K (2) and 500 K (3), higher than that of the parent compound [(BA)2PbCl4] (BA = benzylammonium) at 438 K, but compound 4 exhibits no phase transition. A crystal structure analysis elucidated that the organic template ligands DFBA lead in the inorganic part in compounds 1–3 to a two-dimensional (2D) perovskite structure, while that in compound 4 leads to a one-dimensional (1D) chain structure. The different double-substituted positions of fluorine atoms on benzylamine have important influences on the phase transition in compounds 1–4.
Claire C. Cody, H. Ray Kelly, Brandon Q. Mercado, , ,
Published: 21 September 2021
Abstract:
We find a Cu(II)-(L-CF3)2 complex (L-CF3 = 2,2,2-trifluoro-N-[2-(pyridin-2-yl)propan-2-yl]acetamide) with a distorted “seesaw” geometry. It has the shortest crystallographic CF···Cu distances yet reported, to the best of our knowledge (<2.6 Å), for which computational and experimental data indicate a secondary bonding interaction. A comparison with a CCl3 version and one without ligand backbone gem-dimethyl groups suggests a steric origin for the distorted geometry, resulting from the specific ligand interactions.
, Rong Yang, , Jian-Hong Tang, , Junjie Ma, Lianhui Wang, Jieqing Liu, Dian-Xue Ma, , et al.
Published: 21 September 2021
Abstract:
Three tris-heteroleptic mononuclear Ru(II) complexes with dual fluorescence and phosphorescence—[Ru(dpma)(bpy)(phen)]2+ (12+), [Ru(dpma)(bpy)(dppz)]2+ (22+), and [Ru(dpma)(phen)(dppz)]2+ (32+)—have been designed and used as ratiometric light-response probes for DNA, where dpma is di(pyrid-2-yl)(methyl)-amine, bpy is 2,2′-bipyridine, phen is 1,10-phenanthroline, and dppz is dipyridophenazine, respectively. Single crystals of complex 2(PF6)2 have been obtained and studied by X-ray analysis. The interactions of these complexes with different DNAs are investigated by means of spectroscopic methods, viscosity measurements, and molecular modeling. In the presence of calf thymus DNA, complexes 2(PF6)2 and 3(PF6)2 show the emergence of a new lower-energy phosphorescence emission band; meanwhile, the higher-energy fluorescence emission band is essentially unchanged, functioning as an intrinsic internal reference. These two complexes exhibit stronger preference for calf thymus DNA over single-strand DNA (d(A)16 and d(C)16). In contrast, no binding interaction between 1(PF6)2 and calf thymus DNA is observed. The intrinsic binding constants (Kb) of 2(PF6)2 and 3(PF6)2 with calf thymus DNA are determined to be (1.4 ± 0.4) × 105 and (9.5 ± 0.15) × 104 M–1, respectively. In addition, these spectroscopic results are compared with those of the prototype complex [Ru(bpy)2(dppz)]2+ (42+), and density functional theory and time-dependent density functional theory calculations are employed to elucidate these experimental findings.
Back to Top Top