Journal of Applied Crystallography

Journal Information
ISSN / EISSN : 0021-8898 / 1600-5767
Total articles ≅ 9,809
Current Coverage
SCOPUS
EI COMPENDEX
PUBMED
SCIE
INSPEC
Archived in
EBSCO
SHERPA/ROMEO
Filter:

Latest articles in this journal

Journal of Applied Crystallography, Volume 55, pp 929-943; https://doi.org/10.1107/s1600576722006380

Abstract:
The spectroscopic ptychography method, a technique combining X-ray ptychography imaging and X-ray absorption spectroscopy, is one of the most promising and powerful tools for studying the chemical states and morphological structures of bulk materials at high resolutions. However, this technique still requires long measurement periods because of insufficient coherent X-ray intensity. Although the improvements in hardware represent a critical solution, breakthroughs in software for experiments and analyses are also required. This paper proposes a novel method for restoring the spectrum structures from spectroscopic ptychography measurements with reduced energy points, by utilizing the Kramers–Kronig relationship. First, a numerical simulation is performed of the spectrum restoration for the extended X-ray absorption fine structure (EXAFS) oscillation from the thinned theoretical absorption and phase spectra. Then, this algorithm is extended by binning the noise removal to handle actual experimental spectral data. Spectrum restoration for the experimental EXAFS data obtained from spectroscopic ptychography measurements is also successfully demonstrated. The proposed restoration will help shorten the time required for spectroscopic ptychography single measurements and increase the throughput of the entire experiment under limited time resources.
Journal of Applied Crystallography, Volume 55, pp 944-952; https://doi.org/10.1107/s1600576722005891

Abstract:
Liquid sample delivery systems are used extensively for serial femtosecond crystallography at X-ray free-electron lasers (XFELs). However, misalignment of the liquid jet and the XFEL beam leads to the X-rays either partially or completely missing the sample, resulting in sample wastage and a loss of experiment time. Implemented here is an algorithm to analyse optical images using machine vision to determine whether there is overlap of the X-ray beam and liquid jet. The long-term goal is to use the output from this algorithm to implement an automated feedback mechanism to maintain constant alignment of the X-ray beam and liquid jet. The key elements of this jet alignment algorithm are discussed and its performance is characterized by comparing the results with a manual analysis of the optical image data. The success rate of the algorithm for correctly identifying hits is quantified via a similarity metric, the Dice coefficient. In total four different nozzle designs were used in this study, yielding an overall Dice coefficient of 0.98.
Journal of Applied Crystallography, Volume 55, pp 966-977; https://doi.org/10.1107/s1600576722006379

Abstract:
A general method to invert parameter distributions of a polydisperse system using data acquired from a small-angle scattering (SAS) experiment is presented. The forward problem, i.e. calculating the scattering intensity given the distributions of any causal parameters of a theoretical model, is generalized as a multi-linear map, characterized by a high-dimensional Green tensor that represents the complete scattering physics. The inverse problem, i.e. finding the maximum-likelihood estimation of the parameter distributions (in free form) given the scattering intensity (either a curve or an image) acquired from an experiment, is formulated as a constrained nonlinear programming (NLP) problem. This NLP problem is solved with high accuracy and efficiency via several theoretical and computational enhancements, such as an automatic data scaling for accuracy preservation and GPU acceleration for large-scale multi-parameter systems. Six numerical examples are presented, including both synthetic tests and solutions to real neutron and X-ray data sets, where the method is compared with several existing methods in terms of their generality, accuracy and computational cost. These examples show that SAS inversion is subject to a high degree of non-uniqueness of solution or structural ambiguity. With an ultra-high accuracy, the method can yield a series of near-optimal solutions that fit data to different acceptable levels.
Journal of Applied Crystallography, Volume 55, pp 953-965; https://doi.org/10.1107/s1600576722006367

Abstract:
Transmission electron microscopy is a powerful experimental tool, very effective for the complete characterization of nanocrystalline materials by employing a combination of imaging, spectroscopy and diffraction techniques. Electron powder diffraction (EPD) pattern fingerprinting in association with chemical information from spectroscopy can be used to deduce the identity of the crystalline phases. Furthermore, EPD has similar potential to X-ray powder diffraction (XRPD) for extracting additional information regarding material specimens, such as microstructural features and defect structures. The aim of this paper is to extend a full-pattern fitting procedure, broadly used for analysing XRPD patterns, to EPD. The interest of this approach is twofold: in the first place, the relatively short times involved with data acquisition allow one to speed up the characterization procedures. This is a particularly interesting aspect in the case of metastable structures or kinetics studies. Moreover, the reduced sampling volumes involved with electron diffraction analyses can better reveal surface alteration layers in the analysed specimen which might be completely overlooked by conventional bulk techniques. The first step forward to have an effective application of the proposed methodology concerns establishing a reliable calibration protocol to take into correct account the instrumental effects and thus separate them from those determined by the structure, microstructure and texture of the analysed samples. In this paper, the methodology for determining the instrumental broadening of the diffraction lines is demonstrated through a full quantitative analysis based on the Rietveld refinement of the EPD. In this regard, a CeO2 nanopowder reference specimen has been used. The results provide indications also on the specific features that a good calibration standard should have.
Journal of Applied Crystallography, Volume 55, pp 1063-1071; https://doi.org/10.1107/s1600576722006653

Abstract:
Since its publication more than 15 years ago the GenX software has been continuously developed and has established itself as a standard package for analyzing X-ray and neutron reflectometry data. The evolution of the software during the last two major revisions is reported here. This includes a simplified model builder for beginners, simple samples, additional sample models, statistical error analysis and the use of just-in-time compilation modules for the reflectometry kernel to achieve higher performance. In addition, the influence of experimental errors on the reflectivity curve is discussed, and new features are described that allow the user to include these in the error statistics to improve the fitting and uncertainty estimation.
Journal of Applied Crystallography, Volume 55, pp 901-910; https://doi.org/10.1107/s1600576722006690

Abstract:
In the production of polyacrylonitrile-based carbon fibers (PAN-CFs), preoxidation is a key step to improving the thermal stability of the fibers and forming their structural prototype. However, structural evaluation of PAN fibers during preoxidation remains ambiguous, partly due to a lack of in situ studies. This contribution reports an in situ study of the preoxidation of PAN fibers using wide-angle X-ray scattering and small-angle X-ray scattering techniques on a synchrotron radiation beamline. The structural changes of the skeleton and pores in the fibers are revealed and correspond to five kinds of diffraction spots (peaks) and two kinds of scattering streaks, respectively. The preoxidation shows obvious stages, and the corresponding possible mechanism is analyzed.
Journal of Applied Crystallography, Volume 55, pp 919-928; https://doi.org/10.1107/s1600576722006549

Abstract:
A systematic study has been carried out to investigate the neutron transmission signal as a function of sample temperature. In particular, the experimentally determined wavelength-dependent neutron attenuation spectra for a martensitic steel at temperatures ranging from 21 to 700°C are compared with simulated data. A theoretical description that includes the Debye–Waller factor in order to describe the temperature influence on the neutron cross sections was implemented in the nxsPlotter software and used for the simulations. The analysis of the attenuation coefficients at varying temperatures shows that the missing contributions due to elastic and inelastic scattering can be clearly distinguished: while the elastically scattered intensities decrease with higher temperatures, the inelastically scattered intensities increase, and the two can be separated from each other by analysing unique sharp features in the form of Bragg edges. This study presents the first systematic approach to quantify this effect and can serve as a basis , for example, to correct measurements taken during in situ heat treatments, in many cases being a prerequisite for obtaining quantifiable results.
Journal of Applied Crystallography, Volume 55, pp 911-918; https://doi.org/10.1107/s1600576722006537

Abstract:
In situ investigations of cracks propagating at up to 2.5 km s−1 along an (001) plane of a silicon single crystal are reported, using X-ray diffraction megahertz imaging with intense and time-structured synchrotron radiation. The studied system is based on the Smart Cut process, where a buried layer in a material (typically Si) is weakened by microcracks and then used to drive a macroscopic crack (10−1 m) in a plane parallel to the surface with minimal deviation (10−9 m). A direct confirmation that the shape of the crack front is not affected by the distribution of the microcracks is provided. Instantaneous crack velocities over the centimetre-wide field of view were measured and showed an effect of local heating by the X-ray beam. The post-crack movements of the separated wafer parts could also be observed and explained using pneumatics and elasticity. A comprehensive view of controlled fracture propagation in a crystalline material is provided, paving the way for the in situ measurement of ultra-fast strain field propagation.
Journal of Applied Crystallography, Volume 55, pp 1029-1032; https://doi.org/10.1107/s1600576722006483

Abstract:
For the nondestructive characterization of SiC wafers for power device application, birefringence imaging is one of the promising methods. In the present study, it is demonstrated that birefringence image contrast variation in off-axis SiC wafers corresponds to the in-plane shear stress under conditions slightly deviating from crossed Nicols according to both theoretical consideration and experimental observation. The current results indicate that the characterization of defects in SiC wafers is possible to achieve by birefringence imaging.
Journal of Applied Crystallography, Volume 55; https://doi.org/10.1107/s1600576722005945

Abstract:
The design of X-ray optics based on diffraction from crystals depends on the accurate calculation of the structure factors of their Bragg reflections over a wide range of temperatures. In general, the temperature dependence of the lattice parameters, the atomic positions and the atomic thermal vibrations is both anisotropic and nonlinear. Implemented here is a software package for precise and flexible calculation of structure factors for dynamical diffraction. α-Quartz is used as an example because it presents the challenges mentioned above and because it is being considered for use in high-resolution X-ray spectroscopy. The package is designed to be extended easily to other crystals by adding new material files, which are kept separate from the package's stable core. Python 3 was chosen as the language to allow the easy integration of this code into existing packages. The importance of a correct anisotropic treatment of the atomic thermal vibrations is demonstrated by comparison with an isotropic Debye model. Discrepancies between the two models can be as much as 5% for strong reflections and considerably larger (even to the level of 100%) for weak reflections. A script for finding Bragg reflections that backscatter X-rays of a given energy within a given temperature range is demonstrated. The package and example scripts are available on request. Also discussed, in detail, are the various conventions related to the proper description of chiral quartz.
Back to Top Top