Journal Information
ISSN / EISSN : 20754450 / 20754450
Current Publisher: MDPI (10.3390)
Total articles ≅ 1,245
Google Scholar h5-index: 24
Current Coverage
SCOPUS
PUBMED
PMC
SCIE
DOAJ
Archived in
SHERPA/ROMEO
EBSCO
Filter:

Latest articles in this journal

Nicola Bodino, Vincenzo Cavalieri, Crescenza Dongiovanni, Matteo Saladini, Anna Simonetto, Stefania Volani, Elisa Plazio, Giuseppe Altamura, Daniele Tauro, Gianni Gilioli, et al.
Published: 18 February 2020
by MDPI
Insects, Volume 11; doi:10.3390/insects11020130

Abstract:Spittlebugs are the vectors of the bacterium Xylella fastidiosa Wells in Europe, the causal agent of olive dieback epidemic in Apulia, Italy. Selection and distribution of different spittlebug species on host-plants were investigated during field surveys in 2016–2018 in four olive orchards of Apulia and Liguria Regions of Italy. The nymphal population in the herbaceous cover was estimated using quadrat samplings. Adults were collected by sweeping net on three different vegetational components: herbaceous cover, olive canopy, and wild woody plants. Three species of spittlebugs were collected: Philaenus spumarius L., Neophilaenus campestris (Fallén), and Aphrophora alni (L.) (Hemiptera: Aphrophoridae). Philaenus spumarius was the predominant species both in Apulia and Liguria olive groves. Nymphal stages are highly polyphagous, selecting preferentially Asteraceae Fabaceae plant families, in particular some genera, e.g., Picris, Crepis, Sonchus, Bellis, Cichorium, and Medicago. Host-plant preference of nymphs varies according to the Region and through time and nymphal instar. In the monitored sites, adults peak on olive trees earlier in Apulia (i.e., during inflorescence emergence) than in Liguria (i.e., during flowering and beginning of fruit development). Principal alternative woody hosts are Quercus spp. and Pistacia spp. Knowledge concerning plant selection and ecological traits of spittlebugs in different Mediterranean olive production areas is needed to design effective and precise control strategies against X. fastidiosa vectors in olive groves, such as ground cover modifications to reduce populations of spittlebug vectors.
Ho Dung Manh, Do Thi Hue, Nguyen Thi Thanh Hieu, Doan Thi Thanh Tuyen, Ong Thi Tuyet
Published: 17 February 2020
by MDPI
Insects, Volume 11; doi:10.3390/insects11020128

Abstract:The larvicidal activity of essential oils (EOs) extracted from Cymbopogon citratus, Cymbopogon winterianus, Eucalyptus citriodora, and Eucalyptus camaldulensis aromatic plants grown in Vietnam was evaluated on Aedes aegypti larvae. The EOs were hydro-distilled in a Clevenger-type apparatus. The EOs were analyzed by gas chromatography–mass spectrometry (GC–MS). The mortality rates obtained from the bioassays were used to calculate the lethal concentrations (LC50) of the EOs by the probit analysis method. These essential oils exhibited toxicity to the larvae of Aedes aegypti. Results were obtained for Cymbopogon citratus (LC50 = 120.6 ppm), Cymbopogon winterianus (LC50 = 38.8 ppm), Eucalyptus citriodora (LC50 = 104.4 ppm), and Eucalyptus camaldulensis (LC50 = 33.7 ppm). The essential oils of Eucalyptus camaldulensis and Cymbopogon winterianus were found to be the most efficient, and their respective values of LC50 were 33.7 ppm, 38.8 ppm. In conclusion, this research adds to the growing body of literature on natural larvicides from essential oils against Aedes aegypti mosquitoes.
Enrico Schifani, Cristina Castracani, Daniele Giannetti, Fiorenza Augusta Spotti, Roberto Reggiani, Stefano Leonardi, Alessandra Mori, Donato Antonio Grasso
Published: 17 February 2020
by MDPI
Insects, Volume 11; doi:10.3390/insects11020129

Abstract:Knowledge of the role of ants in many agroecosystems is relatively scarce, and in temperate regions the possibility to exploit ants as biocontrol agents for crop protection is still largely unexplored. Drawing inspiration from mutualistic ant–plant relationships mediated by extrafloral nectaries (EFNs), we tested the use of artificial nectaries (ANs) in order to increase ant activity on pear trees and to evaluate the effects on the arthropods, plant health and fruit production. While EFNs secrete a complex solution mainly composed of sugars and amino acids, ANs were filled with water and sucrose only. The results suggest that ANs can be used as manipulative instruments to increase ant activity over long periods of time. High ant activity was significantly linked to lower incidence of the pathogen fungus Venturia pyrina (pear scab) on pear leaves, and of the presence of Cydia pomonella (codling moth) caterpillars on pear fruit production. These results further encourage exploring underrated possibilities in the development of new tools for conservation biological control (CBC).
Fabrice Lamy, Laura Bellec, Amélie Rusu-Stievenard, Pauline Clin, Claire Ricono, Diane Olivier, Solène Mauger, Denis Poinsot, Vincent Faloya, Loïc Daniel, et al.
Published: 17 February 2020
by MDPI
Insects, Volume 11; doi:10.3390/insects11020127

Abstract:The development of integrated pest management strategies becomes more and more pressing in view of potential harmful effects of synthetic pesticides on the environment and human health. A promising alternative strategy against Delia radicum is the use of trap crops. Chinese cabbage (Brassica rapa subsp. pekinensis and subsp. chinensis) is a highly sensitive Brassicaceae species previously identified as a good candidate to attract the cabbage root fly away from other crops. Here, we carried out multi-choice experiments both in the laboratory and in field conditions to measure the oviposition susceptibilities of different subspecies and cultivars of Chinese cabbages as compared to a broccoli reference. We found large differences among subspecies and cultivars of the Chinese cabbage, which received three to eleven times more eggs than the broccoli reference in field conditions. In laboratory conditions, the chinensis subspecies did not receive more eggs than the broccoli reference. We conclude that D. radicum largely prefers to lay eggs on the pekinensis subspecies of Chinese cabbage compared to the chinensis subspecies or broccoli. Some pekinensis cultivars, which received over ten times more eggs than broccoli in the field, appear especially promising candidates to further develop trap crop strategies against the cabbage root fly.
Pei-Jin Yang, Er-Hu Chen, Zhong-Hao Song, Wang He, Shi-Huo Liu, Wei Dou, Jin-Jun Wang
Published: 16 February 2020
by MDPI
Insects, Volume 11; doi:10.3390/insects11020126

Abstract:The oriental fruit fly (Bactrocera dorsalis) is a pest that causes large economic losses in the fruit and vegetable industry, so its control is a major challenge. Nuclear receptors (NRs) are a superfamily of ligand-dependent transcription factors that directly combine with DNA to regulate the expression of downstream target genes. NRs are closely associated with multiple physiological processes such as metabolism, reproduction, and development. Through sequence searches and analysis, we identified 21 B. dorsalis NR genes, all of which contained at least one of the two characteristic binding domains. On the basis of the conserved sequences and phylogenetic relationships, we divided the 21 NR genes into seven subfamilies. All members of the NR0 subfamily and BdHR83, which belonged to the NR2E group, lacked ligand-binding domains. The BdDSF and BdHR51, which also belonged to the NR2Egroup, and BdE78 (which belonged to the NR1E group) all lacked DNA-binding domains. The BdDSF and BdHR83 sequences were incomplete, and were not successfully amplified. Development- and tissue-specific expression profiling demonstrated that the transcript levels of the 19 NR genes varied considerably among eggs, larva, pupae, and adults, as well as among larval and adult male and female tissues. Our results will contribute to a better understanding of NR evolution and expand our knowledge of B. dorsalis physiology.
Alessandra Mura, Michelina Pusceddu, Panagiotis Theodorou, Alberto Angioni, Ignazio Floris, Robert Paxton, Alberto Satta
Published: 15 February 2020
by MDPI
Insects, Volume 11; doi:10.3390/insects11020124

Abstract:Nosema ceranae is a widespread obligate intracellular parasite of the ventriculus of many species of honey bee (Apis), including the Western honey bee Apis mellifera, in which it may lead to colony death. It can be controlled in A. mellifera by feeding the antibiotic fumagillin to a colony, though this product is toxic to humans and its use has now been banned in many countries, so in beekeeping, there exists a need for alternative and safe products effective against N. ceranae. Honeybees produce propolis from resinous substances collected from plants and use it to protect their nest from parasites and pathogens; propolis is thought to decrease the microbial load of the hive. We hypothesized that propolis might also reduce N. ceranae infection of individual bees and that they might consume propolis as a form of self-medication. To test these hypotheses, we evaluated the effects of an ethanolic extract of propolis administered orally on the longevity and spore load of experimentally N. ceranae-infected worker bees and also tested whether infected bees were more attracted to, and consumed a greater proportion of, a diet containing propolis in comparison to uninfected bees. Propolis extracts and ethanol (solvent control) increased the lifespan of N. ceranae-infected bees, but only propolis extract significantly reduced spore load. Our propolis extract primarily contained derivatives of caffeic acid, ferulic acid, ellagic acid and quercetin. Choice, scan sampling and food consumption tests did not reveal any preference of N. ceranae-infected bees for commercial candy containing propolis. Our research supports the hypothesis that propolis represents an effective and safe product to control N. ceranae but worker bees seem not to use it to self-medicate when infected with this pathogen.
Moritz Trinkl, Benjamin Kaluza, Helen Wallace, Tim Heard, Alexander Keller, Sara Leonhardt
Published: 15 February 2020
by MDPI
Insects, Volume 11; doi:10.3390/insects11020125

Abstract:Bees need food of appropriate nutritional quality to maintain their metabolic functions. They largely obtain all required nutrients from floral resources, i.e., pollen and nectar. However, the diversity, composition and nutritional quality of floral resources varies with the surrounding environment and can be strongly altered in human-impacted habitats. We investigated whether differences in plant species richness as found in the surrounding environment correlated with variation in the floral diversity and nutritional quality of larval provisions (i.e., mixtures of pollen, nectar and salivary secretions) composed by the mass-provisioning stingless bee Tetragonula carbonaria (Apidae: Meliponini). We found that the floral diversity of larval provisions increased with increasing plant species richness. The sucrose and fat (total fatty acid) content and the proportion and concentration of the omega-6 fatty acid linoleic acid decreased, whereas the proportion of the omega-3 fatty acid linolenic acid increased with increasing plant species richness. Protein (total amino acid) content and amino acid composition did not change. The protein to fat (P:F) ratio, known to affect bee foraging, increased on average by more than 40% from plantations to forests and gardens, while the omega-6:3 ratio, known to negatively affect cognitive performance, decreased with increasing plant species richness. Our results suggest that plant species richness may support T. carbonaria colonies by providing not only a continuous resource supply (as shown in a previous study), but also floral resources of high nutritional quality.
Atsuki Hiyama, Joji M. Otaki
Published: 14 February 2020
by MDPI
Insects, Volume 11; doi:10.3390/insects11020122

Abstract:The pale grass blue butterfly Zizeeria maha (Lepidoptera: Lycaenidae) has been used as an environmental indicator species for radioactive pollution after the Fukushima nuclear accident. Here, based on the one-individual tracking method in the field, we examined dispersal-associated and other behavioral traits of this butterfly, focusing on two subspecies, Z. maha argia in mainland Japan and Z. maha okinawana in Okinawa. The accumulated distances in the adult lifespan were 18.9 km and 38.2 km in mainland and Okinawa males, respectively, and 15.0 km and 7.8 km in mainland and Okinawa females, respectively. However, the mean distance from the starting point was only 24.2 m and 21.1 m in the mainland and Okinawa males, respectively, and 13.7 m and 7.4 m in the mainland and Okinawa females, respectively. Some quantitative differences in resting and feeding were found between subspecies and between sexes. The ARIMA (autoregressive integrated moving average) model indicated that the dispersal distance was 52.3 m (99% confidence interval value of 706.6 m) from the starting point in mainland males. These results support the idea that despite some behavioral differences, both subspecies of this butterfly are suitable as an environmental indicator because of the small dispersal ranges.
Zheng Wei, Xin Tong, Bao-Zhen Hua
Published: 14 February 2020
by MDPI
Insects, Volume 11; doi:10.3390/insects11020123

Abstract:Hangingflies are characterized by the interesting nuptial feeding behavior and unusual belly-to-belly hanging mating position. However, the mating behavior and the copulatory mechanism remain poorly known for Bittacidae, especially how the elongated male penisfilum enters the copulatory pore of the female. In this study, the mating behavior and copulatory mechanism of Terrobittacus implicatus (Huang and Hua, 2006) were investigated to reveal the functional morphology of hangingfly genitalia. The results show that the male provides a prey as a nuptial gift to the female and twists his abdomen about 180° to form a belly-to-belly hanging mating position. During the penisfilum-entering process, the male epandrial lobes clamp the female subgenital plate with the aid of the female abdomen swelling. Then the male locates the female copulatory pore through his upper branch of the proctiger and inserts his penisfilum into the female spermathecal duct in cooperation with the short setae on the groove of the proctiger. The female subgenital plate where the epandrial lobes clamp is strongly sclerotized and melanized. The copulatory mechanism of Terrobittacus is briefly discussed.
Mohamed A.A. Omar, Meizhen Li, Feiling Liu, Kang He, Muhammad Qasim, Huamei Xiao, Mingxing Jiang, Fei Li, Li
Published: 12 February 2020
by MDPI
Insects, Volume 11; doi:10.3390/insects11020121

Abstract:The cotton mealybug, Phenacoccus solenopsis, is an invasive pest that can cause massive damage to many host plants of agricultural importance. P. solenopsis is highly polyphagous, and shows extreme sexual dimorphism between males and females. The functions of DNA methyltransferase (DNMT) enzymes in the cotton mealybug have not been well studied. Here, we carried out an investigation of DNMTs in cotton mealybug to study their roles in sexual dimorphism. We found that the cotton mealybug has two copies of PsDnmt1, but Dnmt3 is absent. We then amplified the full-length cDNAs of PsDnmt1A (2,225 bp) and PsDnmt1B (2,862 bp) using rapid amplification cDNA ends (RACE). Quantitative reverse transcriptase PCR shows that both PsDnmt1A and PsDnmt1B are highly expressed in adult males, while the expression of PsDnmt1B is 30-fold higher in gravid females than in virgin females. We knocked down PsDnmt1A and PsDnmt1B with small interfering RNAs (siRNAs), and both genes were successfully down-regulated after 24 h or 72 h in adult females and pupa (t-test, p < 0.05). Down-regulating the expression of these two DNMT genes led to offspring lethality and abnormal body color in adult females. Furthermore, the silencing of PsDnmt1B induced abnormal wing development in emerged adult males. Our results provide evidence that PsDnmt1 plays a crucial role in regulating sexual dimorphism in the cotton mealybug.