International Journal of Molecular Sciences

Journal Information
ISSN / EISSN : 14220067 / 14220067
Current Publisher: MDPI (10.3390)
Total articles ≅ 25,204
Google Scholar h5-index: 104
Current Coverage
SCOPUS
PUBMED
MEDLINE
MEDICUS
PMC
SCIE
INSPEC
DOAJ
Archived in
SHERPA/ROMEO
EBSCO
Filter:

Latest articles in this journal

Isabel Gessner, Ines Neundorf
International Journal of Molecular Sciences, Volume 21; doi:10.3390/ijms21072536

Abstract:
Based on their tunable physicochemical properties and the possibility of producing cell-specific platforms through surface modification with functional biomolecules, nanoparticles (NPs) represent highly promising tools for biomedical applications. To improve their potential under physiological conditions and to enhance their cellular uptake, combinations with cell-penetrating peptides (CPPs) represent a valuable strategy. CPPs are often cationic peptide sequences that are able to translocate across biological membranes and to carry attached cargos inside cells and have thus been recognized as versatile tools for drug delivery. Nevertheless, the conjugation of CPP to NP surfaces is dependent on many properties from both individual components, and further insight into this complex interplay is needed to allow for the fabrication of highly stable but functional vectors. Since CPPs per se are nonselective and enter nearly all cells likewise, additional decoration of NPs with homing devices, such as tumor-homing peptides, enables the design of multifunctional platforms for the targeted delivery of chemotherapeutic drugs. In this review, we have updated the recent advances in the field of CPP-NPs, focusing on synthesis strategies, elucidating the influence of different physicochemical properties, as well as their application in cancer research.
Yuji Nozaki, Jinhai Ri, Kenji Sakai, Kaoru Niki, Masanori Funauchi, Itaru Matsumura
International Journal of Molecular Sciences, Volume 21; doi:10.3390/ijms21072519

Abstract:
Thrombomodulin (TM) is a single transmembrane, multidomain glycoprotein receptor for thrombin, and is best known for its role as a cofactor in a clinically important natural anticoagulant pathway. In addition to its anticoagulant function, TM has well-defined anti-inflammatory properties. Soluble TM levels increase significantly in the plasma of septic patients; however, the possible involvement of recombinant human soluble TM (rTM) transduction in the pathogenesis of lipopolysaccharide (LPS)-induced nephrotoxicity, including acute kidney injury (AKI), has remained unclear. Mice were injected intraperitoneally with 15 mg/kg LPS. rTM (3 mg/kg) or saline was administered to the animals before the 3 and 24 h LPS-injection. At 24 and 48 h, blood urea nitrogen, the inflammatory cytokines in sera and kidney, and histological findings were assessed. Cell activation and apoptosis signal was assessed by Western blot analysis. In this study using a mouse model of LPS-induced AKI, we found that rTM attenuated renal damage by reducing both cytokine and cell activation and apoptosis signals with the accumulation of CD4+ T-cells, CD11c+ cells, and F4/80+ cells via phospho c-Jun activations and Bax expression. These findings suggest that the mechanism underlying these effects of TM may be mediated by a reduction in inflammatory cytokine production in response to LPS. These molecules might thereby provide a new therapeutic strategy in the context of AKI with sepsis.
Olga Utyro, Joanna Perła-Kaján, Hieronim Jakubowski
International Journal of Molecular Sciences, Volume 21; doi:10.3390/ijms21072520

Abstract:
Cystathionine β-synthase (CBS) is a housekeeping enzyme that catalyzes the first step of the homocysteine to cysteine transsulfuration pathway. Homozygous deletion of the Cbs gene in mice causes severe hyperhomocysteinemia and reduces life span. Here, we examined a possible involvement of senescence, mitochondrial DNA, and telomeres in the reduced life span of Cbs−/− mice. We found that senescence-related p21, Pai-1, Mcp1, and Il-6 mRNAs were significantly upregulated (2–10-fold) in liver, while p21 was upregulated in the brain of Cbs−/− mice (n = 20) compared with control Cbs+/− siblings (n = 20) in a sex- and age-dependent manner. Telomere length in blood (n = 80), liver (n = 40), and brain (n = 40) was not affected by the Cbs−/− genotype, but varied with sex and/or age. Levels of mitochondrial DNA tended to be reduced in livers, but not brains and blood, of Cbs−/− females (n = 20–40). The Cbs−/− genotype significantly reduced Tert mRNA expression in brain, but not liver, in a sex- and age-dependent manner. Multiple regression analysis showed that the senescence-related liver (but not brain) mRNAs and liver (but not brain or blood) mitochondrial DNA were associated with the Cbs genotype. In contrast, telomere length in blood, brain, and liver was not associated with the Cbs genotype or hyperhomocysteinemia, but was associated with sex (in brain and liver) and age (in brain and blood). Taken together, these findings suggest that the changes in senescence marker expression and mtDNA levels, but not telomere shortening, could account for the reduced life span of Cbs−/− mice.
Jana Pryjmaková, Markéta Kaimlová, Tomáš Hubáček, Václav Švorčík, Jakub Siegel
International Journal of Molecular Sciences, Volume 21; doi:10.3390/ijms21072521

Abstract:
This paper review current trends in applications of nanomaterials in tissue engineering. Nanomaterials applicable in this area can be divided into two groups: organic and inorganic. Organic nanomaterials are especially used for the preparation of highly porous scaffolds for cell cultivation and are represented by polymeric nanofibers. Inorganic nanomaterials are implemented as they stand or dispersed in matrices promoting their functional properties while preserving high level of biocompatibility. They are used in various forms (e.g., nano- particles, -tubes and -fibers)—and when forming the composites with organic matrices—are able to enhance many resulting properties (biologic, mechanical, electrical and/or antibacterial). For this reason, this contribution points especially to such type of composite nanomaterials. Basic information on classification, properties and application potential of single nanostructures, as well as complex scaffolds suitable for 3D tissues reconstruction is provided. Examples of practical usage of these structures are demonstrated on cartilage, bone, neural, cardiac and skin tissue regeneration and replacements. Nanomaterials open up new ways of treatments in almost all areas of current tissue regeneration, especially in tissue support or cell proliferation and growth. They significantly promote tissue rebuilding by direct replacement of damaged tissues.
Tamás Kovács-Öller, Elena Ivanova, Gergely Szarka, Ádám Tengölics, Béla Völgyi, Botir Sagdullaev
International Journal of Molecular Sciences, Volume 21; doi:10.3390/ijms21072522

Abstract:
The nervous system demands an adequate oxygen and metabolite exchange, making pericytes (PCs), the only vasoactive cells on the capillaries, essential to neural function. Loss of PCs is a hallmark of multiple diseases, including diabetes, Alzheimer’s, amyotrophic lateral sclerosis (ALS) and Parkinson’s. Platelet-derived growth factor receptors (PDGFRs) have been shown to be critical to PC function and survival. However, how PDGFR-mediated PC activity affects vascular homeostasis is not fully understood. Here, we tested the hypothesis that imatinib, a chemotherapeutic agent and a potent PDGFR inhibitor, alters PC distribution and thus induces vascular atrophy. We performed a morphometric analysis of the vascular elements in sham control and imatinib-treated NG2-DsRed mice. Vascular morphology and the integrity of the blood–retina barrier (BRB) were evaluated using blood albumin labeling. We found that imatinib decreased the number of PCs and blood vessel (BV) coverage in all retinal vascular layers; this was accompanied by a shrinkage of BV diameters. Surprisingly, the total length of capillaries was not altered, suggesting a preferential effect of imatinib on PCs. Furthermore, blood–retina barrier disruption was not evident. In conclusion, our data suggest that imatinib could help in treating neurovascular diseases and serve as a model for PC loss, without BRB disruption.
Rike Schulte, Dirk Wohlleber, Ludmilla Unrau, Bernd Geers, Christina Metzger, Annette Erhardt, Gisa Tiegs, Nico Van Rooijen, Lukas Heukamp, Luisa Klotz, et al.
International Journal of Molecular Sciences, Volume 21; doi:10.3390/ijms21072523

Abstract:
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) regulates target gene expression upon ligand binding. Apart from its effects on metabolism, PPARγ activity can inhibit the production of pro-inflammatory cytokines by several immune cells, including dendritic cells and macrophages. In chronic inflammatory disease models, PPARγ activation delays the onset and ameliorates disease severity. Here, we investigated the effect of PPARγ activation by the agonist Pioglitazone on the function of hepatic immune cells and its effect in a murine model of immune-mediated hepatitis. Cytokine production by both liver sinusoidal endothelial cells (IL-6) and in T cells ex vivo (IFNγ) was decreased in cells from Pioglitazone-treated mice. However, PPARγ activation did not decrease pro-inflammatory tumor necrosis factor alpha TNFα production by Kupffer cells after Toll-like receptor (TLR) stimulation ex vivo. Most interestingly, although PPARγ activation was shown to ameliorate chronic inflammatory diseases, it did not improve hepatic injury in a model of immune-mediated hepatitis. In contrast, Pioglitazone-induced PPARγ activation exacerbated D-galactosamine (GalN)/lipopolysaccharide (LPS) hepatitis associated with an increased production of TNFα by Kupffer cells and increased sensitivity of hepatocytes towards TNFα after in vivo Pioglitazone administration. These results unravel liver-specific effects of Pioglitazone that fail to attenuate liver inflammation but rather exacerbate liver injury in an experimental hepatitis model.
Dany Domínguez-Pérez, Daniela Almeida, Josef Wissing, André Machado, Lothar Jänsch, Luís Castro, Agostinho Antunes, Vitor Vasconcelos, Alexandre Campos, Isabel Cunha
International Journal of Molecular Sciences, Volume 21; doi:10.3390/ijms21072524

Abstract:
Adhesive secretion has a fundamental role in barnacles’ survival, keeping them in an adequate position on the substrate under a variety of hydrologic regimes. It arouses special interest for industrial applications, such as antifouling strategies, underwater industrial and surgical glues, and dental composites. This study was focused on the goose barnacle Pollicipes pollicipes adhesion system, a species that lives in the Eastern Atlantic strongly exposed intertidal rocky shores and cliffs. The protein composition of P. pollicipes cement multicomplex and cement gland was quantitatively studied using a label-free LC-MS high-throughput proteomic analysis, searched against a custom transcriptome-derived database. Overall, 11,755 peptide sequences were identified in the gland while 2880 peptide sequences were detected in the cement, clustered in 1616 and 1568 protein groups, respectively. The gland proteome was dominated by proteins of the muscle, cytoskeleton, and some uncharacterized proteins, while the cement was, for the first time, reported to be composed by nearly 50% of proteins that are not canonical cement proteins, mainly unannotated proteins, chemical cues, and protease inhibitors, among others. Bulk adhesive proteins accounted for one-third of the cement proteome, with CP52k being the most abundant. Some unannotated proteins highly expressed in the proteomes, as well as at the transcriptomic level, showed similar physicochemical properties to the known surface-coupling barnacle adhesive proteins while the function of the others remains to be discovered. New quantitative and qualitative clues are provided to understand the diversity and function of proteins in the cement of stalked barnacles, contributing to the whole adhesion model in Cirripedia.
Ester Di Filippo, Domiziana Costamagna, Giorgia Giacomazzi, Álvaro Cortés-Calabuig, Agata Stryjewska, Danny Huylebroeck, Stefania Fulle, Maurilio Sampaolesi
International Journal of Molecular Sciences, Volume 21; doi:10.3390/ijms21072525

Abstract:
Skeletal muscle differentiation is triggered by a unique family of myogenic basic helix-loop-helix transcription factors, including MyoD, MRF-4, Myf-5, and Myogenin. These transcription factors bind promoters and distant regulatory regions, including E-box elements, of genes whose expression is restricted to muscle cells. Other E-box binding zinc finger proteins target the same DNA response elements, however, their function in muscle development and regeneration is still unknown. Here, we show that the transcription factor zinc finger E-box-binding homeobox 2 (Zeb2, Sip-1, Zfhx1b) is present in skeletal muscle tissues. We investigate the role of Zeb2 in skeletal muscle differentiation using genetic tools and transgenic mouse embryonic stem cells, together with single-cell RNA-sequencing and in vivo muscle engraftment capability. We show that Zeb2 over-expression has a positive impact on skeletal muscle differentiation in pluripotent stem cells and adult myogenic progenitors. We therefore propose that Zeb2 is a novel myogenic regulator and a possible target for improving skeletal muscle regeneration. The non-neural roles of Zeb2 are poorly understood.
Jorick Franceus, Tom Desmet
International Journal of Molecular Sciences, Volume 21; doi:10.3390/ijms21072526

Abstract:
Sucrose phosphorylases are carbohydrate-active enzymes with outstanding potential for the biocatalytic conversion of common table sugar into products with attractive properties. They belong to the glycoside hydrolase family GH13, where they are found in subfamily 18. In bacteria, these enzymes catalyse the phosphorolysis of sucrose to yield α-glucose 1-phosphate and fructose. However, sucrose phosphorylases can also be applied as versatile transglucosylases for the synthesis of valuable glycosides and sugars because their broad promiscuity allows them to transfer the glucosyl group of sucrose to a diverse collection of compounds other than phosphate. Numerous process and enzyme engineering studies have expanded the range of possible applications of sucrose phosphorylases ever further. Moreover, it has recently been discovered that family GH13 also contains a few novel phosphorylases that are specialised in the phosphorolysis of sucrose 6F-phosphate, glucosylglycerol or glucosylglycerate. In this review, we provide an overview of the progress that has been made in our understanding and exploitation of sucrose phosphorylases and related enzymes over the past ten years.
Qingxin Li, Congbao Kang
International Journal of Molecular Sciences, Volume 21; doi:10.3390/ijms21072527

Abstract:
Nuclear magnetic resonance (NMR) spectroscopy plays important roles in structural biology and drug discovery, as it is a powerful tool to understand protein structures, dynamics, and ligand binding under physiological conditions. The protease of flaviviruses is an attractive target for developing antivirals because it is essential for the maturation of viral proteins. High-resolution structures of the proteases in the absence and presence of ligands/inhibitors were determined using X-ray crystallography, providing structural information for rational drug design. Structural studies suggest that proteases from Dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV) exist in open and closed conformations. Solution NMR studies showed that the closed conformation is predominant in solution and should be utilized in structure-based drug design. Here, we reviewed solution NMR studies of the proteases from these viruses. The accumulated studies demonstrated that NMR spectroscopy provides additional information to understand conformational changes of these proteases in the absence and presence of substrates/inhibitors. In addition, NMR spectroscopy can be used for identifying fragment hits that can be further developed into potent protease inhibitors.