Refine Search

New Search

Results in Journal Bioscience Reports: 5,819

(searched for: journal_id:(71540))
Page of 117
Articles per Page
by
Show export options
  Select all
Li-Li Zhao, Gang Su, Li-Xia Chen, Qi Yan, Xue-Ping Wang, Wei Yuan, Lei Wang,
Published: 29 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171088

Abstract:
Ischemic stroke (IS), the leading neurology cause of death and disability worldwide, is influenced by gene polymorphisms. To explore the association between IS and Apolipoprotein E (APOE) gene polymorphisms, a case–control study containing 513 IS patients and 514 controls without IS was conducted in a Northwest China Han population. MassARRAY iPLEX system was applied to determine the APOE polymorphisms according to the alleles of two single nucleotide polymorphisms (SNPs) of APOE, rs429358, and rs7412. The results showed that rs429358 and rs7412 were in Hardy–Weinberg equilibrium (HWE) in both cases and controls groups. APOE ε4 allele, ε4/ε4 genotype, and ε4-containing genotypes were associated with IS. According to the results of Trial of ORG 10172 in Acute Stroke Treatment (TOAST) classification system, APOE ε2 allele, ε4 allele, and ε4/ε4 genotype were associated with large artery atherosclerosis IS subtypes. In addition, the results also indicated that the ε4 allele related to undetermined IS and ε4/ε4 genotype was related to small vessel disease IS. Compared with subjects with non-ε4-containing genotypes, the total cholesterol (TC) and low-density lipoprotein (LDL) level in blood and the proportion of cardiopath history were higher in all subjects with ε4-containing genotypes. Besides, the triacylglycerides (TG) level in blood was higher in controls with ε4-containing genotypes. In conclusion, in a Northwest China Han population, APOE ε4 allele was associated with blood lipid level. The TC and LDL levels were the independent risk factors for IS. APOE was a risk gene for IS, but not independent, especially for large artery atherosclerosis IS.
Qiaoyun Gong,
Published: 29 November 2017
Bioscience Reports, Volume 37; https://doi.org/10.1042/bsr20171157

Abstract:
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults across the world. The pathogenesis of DR is multifactorial and the molecular mechanisms are still not fully understood. Accumulating evidence has demonstrated that noncoding RNAs (ncRNAs) may be aberrantly expressed and may play vital roles in the development of DR. Amongst ncRNAs, miRNAs and long ncRNAs (lncRNAs) are known for their regulatory functions. Here, we summarize the functions and mechanisms of known aberrantly expressed miRNAs and lncRNAs in DR. Additionally, a novel lncRNA–mRNA–miRNA network is included in this review. We highlight original studies that provide detailed data about the mechanisms of miRNAs and lncRNAs, their applications as diagnostic or prognostic biomarkers, and their potential therapeutic targets. In conclusion, this review will help us gain a better understanding of the molecular mechanisms by which miRNAs and lncRNAs perform their functions in DR, and provide general strategies and directions for future research.
Fang Cao, Qiang Zhang, Wei Chen, Feng Zheng, Qishan Ran, Yang He, Yang Gao,
Published: 12 December 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171038

Abstract:
Gene associated with retinoid-interferon-induced mortality-19 (GRIM-19) has been recognized as a tumor suppressor protein, which regulates cell growth, apoptosis, and migration by signal transducer and activator of transcription 3 (STAT3) signaling pathway and non-STAT3 pathway in glioma cells. Here, we investigated the molecular mechanisms that regulated GRIM-19 expression in glioma cells. By the TargetScan algorithm, four miRNAs, hsa-miR-17-3p, hsa-miR-423-5p, hsa-miR-3184-5p, and hsa-miR-6743-5p, were identified with the potential to bind with 3′-UTR of GRIM-19. Further miRNA inhibitor transfection and luciferase assays revealed that miR-6743-5p was able to directly target the 3′-UTR of GRIM-19. Additionally, miR-6743-5p expression was inversely related with GRIM-19 expression in glioma specimens and cell lines. Moreover, the inhibition of miR-6743-5p caused a significant inhibition of cell proliferation and a marked promotion of cell apoptosis in glioma cells, and this phenotype was rescued by GRIM-19 knockdown. Finally, the inhibition of miR-6743-5p expression suppressed the phosphorylation of STAT3, and the mRNA expression of CyclinD1 and Bcl-2, two target genes of STAT3, while miR-6743-5p mimic had the inversed effects. Treatment with STAT3 inhibitor AG490 partially rescued the proliferation-promoting and anti-apoptosis effects of miR-6743-5p overexpression or GRIM-19 knockdown. Collectively, miR-6743-5p may act as an oncomiRNA in glioma by targetting GRIM-19 and STAT3.
Xiaorui Han, XiaoMing Leng, Man Zhao, Mei Wu, Amei Chen, Guoju Hong, Ping Sun
Published: 23 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171319

Abstract:
Disc nucleus pulposus (NP) matrix homeostasis is important for normal disc function. Mechanical overloading seriously decreases matrix synthesis and increases matrix degradation. The present study aims to investigate the effects of resveratrol on disc NP matrix homeostasis under a relatively high-magnitude mechanical compression and the potential mechanism underlying this process. Porcine discs were perfusion-cultured and subjected to a relatively high-magnitude mechanical compression (1.3 MPa at a frequency of 1.0 Hz for 2 h once per day) for 7 days in a mechanically active bioreactor. The non-compressed discs were used as controls. Resveratrol was added along with culture medium to observe the effects of resveratrol on NP matrix synthesis under mechanical load respectively. NP matrix synthesis was evaluated by histology, biochemical content (glycosaminoglycan (GAG) and hydroxyproline (HYP)), and expression of matrix macromolecules (aggrecan and collagen II). Results showed that this high-magnitude mechanical compression significantly decreased NP matrix content, indicated by the decreased staining intensity of Alcian Blue and biochemical content (GAG and HYP), and the down-regulated expression of NP matrix macromolecules (aggrecan and collagen II). Further analysis indicated that resveratrol partly stimulated NP matrix synthesis and increased activity of the PI3K/Akt pathway in a dose-dependent manner under mechanical compression. Together, resveratrol is beneficial for disc NP matrix synthesis under mechanical overloading, and the activation of the PI3K/Akt pathway may participate in this regulatory process. Resveratrol may be promising to regenerate mechanical overloading-induced disc degeneration.
Hong-Ling He,
Published: 7 December 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170827

Abstract:
The network meta-analysis was conducted to compare the short-term efficacy of different single-drug targeted therapies in the treatment of renal cell carcinoma (RCC). We initially searched databases for randomized controlled trials (RCTs) on different single-drug targeted therapies in treating RCC. The meta-analysis combined the direct and indirect evidence to calculate the pooled odds ratios (OR) and draw surface under the cumulative ranking curves (SUCRA). A total of 14 eligible RCTs were ultimately selected. The partial response (PR) of Cabozantinib in the treatment of RCC was better than Sunitinib (OR = 2.7, 95%CI = 1.0–7.8), Everolimus (OR = 8.1, 95%CI = 3.1–25.0), and Temsirolimus (OR = 4.8, 95%CI = 1.0–31.0); the overall response rate (ORR) of Cabozantinib was better than Sorafenib, Sunitinib, Everolimus, and Temsirolimus (OR = 5.5, 95%CI = 1.1–27.0; OR = 2.6, 95%CI = 1.1–6.6; OR = 8.3, 95%CI = 3.5–20.0; OR = 5.7, 95%CI = 1.3–28.0 respectively). In addition, as for complete response (CR), PR, stable disease (SD), progressive disease (PD), ORR, and disease control rate (DCR), Cabozantinib had the best short-term efficacy among nine single-drug targeted therapies in the treatment of RCC (CR: 50.3%; PR: 93.6%; SD: 75.1%; PD: 68.0%; ORR: 95.5%; DCR: 73.2%); while Everolimus had the worst short-term efficacy (CR: 33.6%; PR: 22.3%; SD: 78.0%; PD: 35.9%; ORR: 22.9%; DCR: 19.9%). Our network meta-analysis indicated that Cabozantinib might have better short-term efficacy than other regimens in the treatment of RCC, while Everolimus might have poor short-term efficacy.
Ji Young Lee, Mi-Sook Kim, Mi So Lee, Jae Eun Ju, Namhyun Chung,
Published: 22 November 2017
Bioscience Reports, Volume 37; https://doi.org/10.1042/bsr20171257

Abstract:
Protein phosphatase 2A (PP2A) is a ubiquitous multifunctional enzyme usually known as a tumor suppressor. Recent studies have reported that although inhibition of PP2A leads to acceleration of cell growth, it also induces damaged cells to pass through the cell cycle and renders them sensitive to radiotherapy. Here, we investigated the radiosensitizing effects of digoxin as a PP2A inhibitor in two non-small-cell lung cancer (NSCLC) cell types (H460 and A549) with differential sensitivity to radiation. Digoxin inhibited the proliferation of H460 and A549 cells in a dose-dependent fashion and was especially effective on radioresistant A549 cells. Interestingly, the radiosensitizing effect of digoxin was only present in the radioresistant A549 cells and xenografts. The combination of digoxin and ionizing radiation (IR) significantly reduced clonogenic survival and xenograft tumor growth (P<0.001), compared with IR alone. Digoxin suppressed PP2A protein expression and prevented IR-induced PP2A expression in A549 cells. Digoxin treatment combined with IR allowed the damaged cell to progress through the cell cycle via suppression of cell cycle-related proteins (p53, cyclin D1, cyclin B1, CDK4, and p-cdc2). Moreover, digoxin enhanced IR-induced DNA damage through reduction in levels of repair proteins and elevation of p-ATM foci formation up to 24 h (P<0.001). In conclusion, digoxin has a novel function as a PP2A inhibitor, and combined with IR produces a synergistic effect on radiosensitizing cells, thereby indicating a potentially promising therapeutic approach to radioresistant lung cancer treatment.
Hongyun Shi, Lanhui Yuan, Huibin Yang,
Published: 12 December 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170684

Abstract:
The apelin gene can promote vascular endothelial cell (VEC) proliferation, migration, and angiogenesis. However, the molecular mechanism for regulation of the apelin gene is still unknown. Real-time PCR and Western blotting analysis were employed to detect the effect of all-trans retinoic acid (ATRA) in up-regulating apelin expression in human umbilical vein endothelial cells (HUVECs). Furthermore, the in vivo study also indicated that ATRA could increase apelin expression in balloon-injured arteries of rats, which is consistent with the results from the cultured HUVECs. To ensure whether retinoic acid receptor (RAR) α (RARα) could be induced by ATRA in regulating apelin, the expression of RARα was tested with a siRNA method to knock down RARα or adenovirus vector infection to overexpress RARα. The results showed that ATRA could up-regulate apelin expression time- and dose- dependently in HUVECs. ATRA could induce a RARα increase; however, the expression of RARβ and RARγ were unchanged. The blocking of RARα signaling reduced the response of apelin to ATRA when HUVECs were treated with RARα antagonists (Ro 41-5253) or the use of siRNA against RARα (si-RARα) knockdown RARα expression before using ATRA. In addition, induction of RARα overexpression by infection with pAd-GFP-RARα further increased the induction of apelin by ATRA. These results suggested that ATRA up-regulated apelin expression by promoting RARα signaling.
Zhibiao Liu, Xin Jin, Wen Pi, Shouhou Liu
Published: 5 December 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170772

Abstract:
Folic acid (FA), which is necessary for normal cell division of mammals, has been implicated to be involved in many tumors. Dietary FA intake has been reported to be associated with a lower risk of nasopharyngeal cancer (NPC). However, the molecular mechanisms of FA in NPC cells remain unclear. In the present study, we found that FA treatment dose dependently inhibited the proliferation, invasion and migration of NPC cells, via folate receptor α (FRα). We further found that FA, bound to FRα, induced the activation of MEK/ERK1/2, and increased the expressions of TSLC1 and E-cadherin. Moreover, blocking of ERK1/2 activation attenuated FA-mediated increase in TSLC1 expression. In addition, knockdown of TSLC1 abolished the FA-mediated inhibition of cell proliferation, invasion and migration, and suppressed the FA-mediated increase oinE-cadherin expression in NPC cells. Taken together, our data suggest that FA treatment inhibits NPC cell proliferation and invasion via activation of FRα/ERK1/2/ TSLC1 signaling pathway. Therefore, FA could be explored as a therapeutic drug for the treatment of NPC, and TSLC1 may act as a tumor suppressor in NPC.
Ming-Peng Zhang, Wei-San Zhang, Jin Tan, Ming-Hui Zhao, Lin-Juan Lian, Jie Cai
Published: 31 October 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170114

Abstract:
Thyroid cancer patients with high miR-490-3p inhibit translation of PCBP1 mRNA, whereas in patients with low miR-490-3p PCBP1 mRNA expression is high; however, the resultant protein is targeted for degradation through the proteasome. The objective of the present study was to evaluate the molecular mechanism that regulates post-translation degradation of poly r(C) binding protein (PCBP) 1 expression in thyroid cancer cells. Mass spectrometric analysis of PCBP1 immunoprecipitates from MG-132 treated TPC1 cells revealed a list of ubiquitin ligases associated with PCBP1. RNAi-mediated silencing of the candidate ubiquitin ligases revealed that knockdown of the ubiquitin ligase UBE4A stabilized PCBP1 in TPC1 cells. Concurrent overexpression of the candidate ubiquitin ligases in the normal thyroid epithelial cell line Nthy-ori 3-1 confirmed that ubiquitin conjugation factor E4 A (UBE4A) is the ubiquitin ligase that is degrading PCBP1. Coimmunoprecipitation of HA-tagged PCBP1 in TPC1 cells cotransfected with FLAG–UBE4A revealed robust polyubiquitinated smear of PCBP1, thus confirming UBE4A as the ubiquitin ligase of PCBP1. UBE4A expression mimicked PCBP1 mRNA expression in thyroid cancer patients and was inversely correlated to PCBP1 protein expression. Low UBE4A expression level was associated with a better prognosis in thyroid cancer patients. Our data reveal a post-translational regulatory mechanism of regulating PCBP1 expression in thyroid cancer cells.
Ankit Tiwari, Niharika Pattnaik, Archita Mohanty Jaiswal,
Published: 27 October 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171062

Abstract:
Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1) is a candidate gene for FSHD. FRG1 regulates various muscle-related functions, but studies have proposed its role in development and angiogenesis also, where it is involved with tumor-associated molecules. Therefore, we decided to look into its role in tumor progression, tumor angiogenesis, and its impact on cellular properties. Cell proliferation, migration, invasion and in vitro angiogenesis assays were performed to decipher the effect of FRG1 on endothelial and epithelial cell functions. Q-RT PCR was done for human embyonic kidney (HEK293T) cells with altered FRG1 levels to identify associated molecules. Further, immunohistochemistry was done to identify FRG1 expression levels in various cancers and its association with tumor angiogenesis. Subsequently, inference was drawn from Oncomine and Kaplan–Meier plotter analysis, for FRG1 expression in different cancers. Ectopic expression of FRG1 affected cell migration and invasion in both HEK293T and human umbilical vein endothelial cells (HUVECs). In HUVECs, FRG1 overexpression led to reduced angiogenesis in vitro. No effect was observed in cell proliferation in both the cell types. Q-RT PCR data revealed reduction in granulocyte-colony stimulating factor (G-CSF) expression with FRG1 overexpression and increased expression of matrix metalloproteinase 10 (MMP10) with FRG1 knockdown. Immunohistochemistry analysis showed reduced FRG1 levels in tumors which were supported by in silico analysis data. These findings suggest that reduction in FRG1 expression in gastric, colon and oral cavity tumor might have a role in tumor progression, by regulating cell migration and invasiveness. To elucidate a better understanding of molecular signaling involving FRG1 in angiogenesis regulation, further study is required.
Haiqing Bai, Gillian Schiralli Lester, Laura C. Petishnok,
Published: 29 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20160616

Abstract:
Productive transfection and gene transfer require not simply the entry of DNA into cells and subsequent transcription from an appropriate promoter, but also a number of intracellular events that allow the DNA to move from the extracellular surface of the cell into and through the cytoplasm, and ultimately across the nuclear envelope and into the nucleus before any transcription can initiate. Immediately upon entry into the cytoplasm, naked DNA, either delivered through physical techniques or after disassembly of DNA–carrier complexes, associates with a large number of cellular proteins that mediate subsequent interactions with the microtubule network for movement toward the microtubule organizing center and the nuclear envelope. Plasmids then enter the nucleus either upon the mitotic disassembly of the nuclear envelope or through nuclear pore complexes in the absence of cell division, using a different set of proteins. This review will discuss our current understanding of these pathways used by naked DNA during the transfection process. While much has been elucidated on these processes, much remains to be discerned, but with the development of a number of model systems and approaches, great progress is being made.
Xin-Hua Wang, Xiao-Hua Song, Yan-Lin Wang, Xing-Hua Diao, Tong Li, Qing-Chun Li, Xiang-Hui Zhang, Xiao-Hui Deng
Published: 23 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170856

Abstract:
Up to 50% of recurrent miscarriage cases in women occur without an underlying etiology. In the current prospective case–control study, we determined the impact of CGG trinucleotide expansions of the fragile-X mental retardation 1 (FMR1) gene in 49 women with unexplained recurrent miscarriages. Case group consisted of women with two or more unexplained consecutive miscarriages. Blood samples were obtained and checked for the presence of expanded alleles of the FMR1 gene using PCR. Patients harboring the expanded allele, with a threshold set to 40 repeats, were further evaluated by sequencing. The number of abortions each woman had, was not associated with her respective CGG repeat number (P=0.255). The repeat sizes of CGG expansion in the FMR1 gene were significantly different in the two population groups (P=0.027). All the positive cases involved intermediate zone carriers. Hence, the CGG expanded allele of the FMR1 gene might be associated with unexplained multiple miscarriages; whether such an association is coincidental or causal can be confirmed by future studies using a larger patient cohort.
Li Miao, Shujun Zhan,
Published: 21 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170973

Abstract:
Interleukin-12 (IL-12) is a proinflammatory cytokine, and its increased level correlates with the severity of periodontitis. However, its role in the pathogenesis of tooth periapical lesions is controversial and has not been completely clarified. The present study aimed to investigate whether IL-12 affects the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in human periodontal ligament fibroblasts (hPDLFs). After treatment with IL-12 for different times, real-time PCR and Western blotting were used to determine the mRNA and protein levels of MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, TIMP-1, and TIMP-2, respectively. ELISA was applied to measure MMPs and TIMPs secretion production. The results indicated that IL-12 significantly increased the mRNA and protein expression levels of MMP-1, MMP-3, and MMP-13, but down-regulated MMP-2 and MMP-9 mRNA and protein expression in the hPDLFs. Furthermore, IL-12 (10 ng/ml) enhanced the secreted protein production of MMP-1, MMP-3, and MMP-13, and conversely lowered MMP-2 and MMP-9 secretion levels. However, IL-12 treatment did not exert a significant effect on the mRNA and protein levels of TIMP-1 and TIMP-2 and their secreted production. Additionally, IL-12 increased the phosphorylated levels of IκBα and nuclear factor-κB P65 (NF-κB P65), and promoted NF-κB P65 subunit nuclear translocation. Pretreatment with NF-κB inhibitor not only attenuated IL-12-induced IκBα and NF-κB P65 phosphorylation and inhibited NF-κB P65 subunit into nucleus, but also antagonized IL-12-mediated MMP-1, MMP-2, MMP-3, MMP-9, and MMP-13 expression in the hPDLFs. These findings indicate that NF-κB-dependent activation is possibly indispensable for IL-12-mediated MMP expression in hPDLFs.
, Severin Rodler, Shangqing Song, Simone Romoli, Julian A. Marschner, Franziska Kraft, Alexander Holderied, Santosh Kumar, , Mohsen Honarpisheh, et al.
Published: 22 December 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170099

Abstract:
Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs. Additionally, the expression of these genes was assessed in murine models of acute sterile inflammation and progressive fibrosis. We show that there are organ-specific gene expression profiles of the Notch-AhR-IL22 axis in humans and mice. Although there is an overall interspecies congruency, specific differences between human and murine expression signatures do exist. In murine tissues with AHR/ARNT expression CYP1A1 and IL-22 were correlated with HES5 and HEYL expression, while in human tissues no such correlation was found. Notch and AhR signaling are involved in renal inflammation and fibrosis with specific gene expression changes in each model. Despite the presence of all Notch pathway molecules in the kidney and a model-specific induction of Notch ligands, IL-22 was only up-regulated in acute inflammation, but rapidly down-regulated during regeneration. This implies that for targeting injury responses, e.g. via IL-22, species-specific differences, injury type and time points have to be considered.
Xiaohua Ye, , , Jiayue Dong
Published: 23 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170964

Abstract:
Severe acute pancreatitis (SAP) remains to be challenging for its unpredictable inflammatory progression from acute pancreatitis to SAP. Apoptosis is an important pathology of SAP. Fibrinogen-like protein 2 (FGL2) has been reported to be involved in apoptosis. The present study aimed to explore the therapeutic effect of an adenovirus-mediated artificial miRNA targetting FGL2 (Ad-FGL2-miRNA) in taurocholate-induced murine pancreatitis models. Sodium taurocholate was retrogradely injected into the biliopancreatic ducts of the C57/BL mice to induce SAP. FGL2 expression was measured with reverse transcription-PCR, Western blotting, and immunohistochemical staining. ELISA was used to detect the activity of amylase and the concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). In addition, the mRNA levels of TNF-α and IL-1β were also detected. Finally, apoptosis was assessed by terminal deoxynucleotidyl transferase mediated dUTP-biotin nick-end labeling (TUNEL) method and Western blotting. Ad-FGL2-miRNA significantly suppressed FGL2 expression and alleviated pancreatic injury. Also, Ad-FGL2-miRNA markedly inhibited a post-SAP increase in the activation of TNF-α and IL-1β. Finally, pretreatment with Ad-FGL2-miRNA ameliorated apoptosis at the early stage of SAP by modulating cleaved caspase-3 and therefore played a protective role. These results indicated that FGL2 might be a promising target for attenuating the severity of SAP and adenovirus-mediated artificial miRNAs targetting FGL2 represented a potential therapeutic approach for the treatment of SAP.
Biao Wang, Zhen Tang, Huiyuan Gong, Li Zhu,
Published: 29 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171092

Abstract:
A recent study indicated that high Wnt5a expression is associated with poor prognosis in non-small-cell lung cancer (NSCLC) patients; however, the underlying mechanism was not clear yet. Immunohistochemistry and Western blotting were performed to examine the protein expression level in NSCLC tissues and cell lines. The role of Wnt5a in clone formation, invasiveness, migration, and epithelial-to-mesenchymal transition (EMT) of NSCLC cells was studied. Luciferase reporter assay was used to evaluate the Tcf/Lef transcriptional activity. For assessing the effects of Wnt5a on tumor growth and metastasis in vivo, A549 cells transfected with sh-Wnt5a were subcutaneously or orthotopically injected into nude mice. In NSCLC tissues, higher expression levels of Wnt5a and ROR2 were found, β-Catenin was expressed exceptionally, and EMT was prompted. Wnt5a overexpression increased clone formation, migration, and invasion, as well as prompted EMT of NSCLC cell in vitro, whereas Wnt5a knockdown showed the absolutely reversed results. Wnt5a overexpression enhanced the Tcf/Lef transcriptional activity and elevated the nuclear β-catenin level in NSCLC cells, without altering the ROR2 expression. We also demonstrated that si-β-catenin antagonized Wnt5a overexpression nduced EMT and invasiveness. Besides, in vivo experiment showed that sh-Wnt5a significantly increased tumor volume and tumor weight, and prompted EMT in A549 tumor-bearing mice as compared with the control. No metastasis was found in the liver tissue after sh-Wnt5a-transfected cells were orthotopically injected into nude mice as compared with the control. In conclusion, Wnt5a promotes EMT and metastasis in NSCLC, which is involved in the activation of β-catenin-dependent canonical Wnt signaling.
Jie Gao, Jie Wang, Na Gao, Xin Tian, Jun Zhou, Yan Fang, Hai-Feng Zhang, Qiang Wen, Lin-Jing Jia, Dan Zou, et al.
Published: 21 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171161

Abstract:
Determining drug-metabolizing enzyme activities on an individual basis is an important component of personalized medicine, and cytochrome P450 enzymes (CYPs) play a principal role in hepatic drug metabolism. Herein, a simple method for predicting the major CYP-mediated drug clearance in vitro and in vivo is presented. Ten CYP-mediated drug metabolic activities in human liver microsomes (HLMs) from 105 normal liver samples were determined. The descriptive models for predicting the activities of these CYPs in HLMs were developed solely on the basis of the measured activities of a smaller number of more readily assayed CYPs. The descriptive models then were combined with the Conventional Bias Corrected in vitro–in vivo extrapolation method to extrapolate drug clearance in vivo. The Vmax, Km, and CLint of six CYPs (CYP2A6, 2C8, 2D6, 2E1, and 3A4/5) could be predicted by measuring the activities of four CYPs (CYP1A2, 2B6, 2C9, and 2C19) in HLMs. Based on the predicted CLint, the values of CYP2A6-, 2C8-, 2D6-, 2E1-, and 3A4/5-mediated drug clearance in vivo were extrapolated and found that the values for all five drugs were close to the observed clearance in vivo. The percentage of extrapolated values of clearance in vivo which fell within 2-fold of the observed clearance ranged from 75.2% to 98.1%. These findings suggest that measuring the activity of CYP1A2, 2B6, 2C9, and 2C19 allowed us to accurately predict CYP2A6-, 2C8-, 2D6-, 2E1-, and 3A4/5-mediated activities in vitro and in vivo and may possibly be helpful for the assessment of an individual’s drug metabolic profile.
, Marian Sackey, Zhaoliang Su, Huaxi Xu
Published: 5 December 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171104

Abstract:
Stroke is a major cause of mortality and disability worldwide. Stroke is a frequent and severe neurovascular disorder. The main cause of stroke is atherosclerosis, and the most common risk factor for atherosclerosis is hypertension. Therefore, prevention and treatment of stroke are crucial issues in humans. High mobility group box 1 (HMGB1) is non-histone nuclear protein that is currently one of the crucial proinflammatory alarmins in ischemic stroke (IS). It is instantly released from necrotic cells in the ischemic core and activates an early inflammatory response. HMGB1 may signal via its putative receptors, such as receptor for advanced glycation end products (RAGE), toll-like receptors (TLRs) as well as matrix metalloproteinase (MMP) enzymes during IS. These receptors are expressed in brain cells. Additionally, brain-released HMGB1 can be redox modified in the circulation and activate peripheral immune cells. The role of HMGB1 may be more complex. HMGB1 possesses beneficial actions, such as endothelial activation, enhancement of neurite outgrowth, and neuronal survival. HMGB1 may also provide a novel link for brain-immune communication leading to post-stroke immunomodulation. Therefore, HMGB1 is new promising therapeutic intervention aimed at promoting neurovascular repair and remodeling after stroke. In this review, we look at the mechanisms of secretion of HMGB1, the role of receptors, MMP enzymes, hypoglycemia, atherosclerosis, edema, angiogenesis as well as neuroimmunological reactions and post-ischemic brain recovery in IS. We also outline therapeutic roles of HMGB1 in IS.
Yanli Luo,
Published: 12 December 2017
Bioscience Reports, Volume 37; https://doi.org/10.1042/bsr20170779

Abstract:
Diabetic vascular complications result from high-glucose induced vascular endothelial cell dysfunction. There is an emerging need for novel drugs with vascular endothelial cell protective effects for the treatment of diabetic vascular complications. The present study aimed to investigate the protective effect of α-mangostin against high-glucose induced apoptosis of cultured human umbilical vein endothelial cells (HUVECs). HUVECs were treated with glucose to induce apoptosis. The expression of the apoptosis-related proteins, Bcl-2, Bax, and cleaved caspase-3, were detected by Western blotting. Ceramide concentration and acid sphingomyelinase (ASM) activity were assayed by HPLC. The cell apoptosis rate was detected by flow cytometry after staining with annexin V/propidium iodide (PI). Compared with HUVECs cultured in 5 mM glucose, cells cultured in 30 mM glucose exhibited a higher apoptosis rate, up-regulation of cleaved caspase-3 and Bax (proapoptotic proteins), down-regulation of Bcl-2 (anti-apoptotic protein), increased ceramide concentration, and enhanced ASM activity (all P<0.05). α-Mangostin (15 µM) significantly attenuated the high-glucose induced increase in apoptosis rate (8.64 ± 2.16 compared with 19.6 ± 3.54%), up-regulation of cleaved caspase-3 and Bax, down-regulation of Bcl-2, elevation of ceramide level, and enhancement of ASM activity (all P<0.05). The effects of desipramine were similar to those of α-mangostin. The protective effect of α-mangostin on high-glucose induced apoptotic damage may be mediated by an inhibition of ASM and thus a decreased level of ceramide.
Guochao Sun, Ying Lu, Yingxia Li, Jun Mao, Jun Zhang, Yanling Jin, Yan Li, Yan Sun, Lei Liu,
Published: 5 December 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170899

Abstract:
MiRNAs have been implicated in processing of cardiac hypoxia/reoxygenation (H/R)-induced injury. Recent studies demonstrated that miR-19a might provide a potential cardioprotective effect on myocardial disease. However, the effect of miR-19a in regulating myocardial ischemic injury has not been previously addressed. The present study was to investigate the effect of miR-19a on myocardial ischemic injury and identified the potential molecular mechanisms involved. Using the H/R model of rat cardiomyocytes H9C2 in vitro, we found that miR-19a was in low expression in H9C2 cells after H/R treatment and H/R dramatically decreased cardiomyocyte viability, and increased lactate dehydrogenase (LDH) release and cardiomyocyte apoptosis, which were attenuated by co-transfection with miR-19a mimic. Dual-luciferase reporter assay and Western blotting assay revealed that PTEN was a direct target gene of miR-19a, and miR-19a suppressed the expression of PTEN via binding to its 3′-UTR. We further identified that overexpression of miR-19a inhibited the expression of PTEN at the mRNA and protein levels. Moreover, PTEN was highly expressed in H/R H9C2 cells and the apoptosis induced by H/R was associated with the increase in PTEN expression. Importantly, miR-19a mimic significantly increased p-Akt levels under H/R. In conclusion, our findings indicate that miR-19a could protect against H/R-induced cardiomyocyte apoptosis by inhibiting PTEN /PI3K/p-Akt signaling pathway.
, Deming Zhao, Liping Dong, Shuang Pan, Fengjin Hao, Yifu Guan
Published: 29 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171128

Abstract:
It is known that the guanine-rich strands in proto-oncogene promoters can fold into G-quadruplex structures to regulate gene expression. An intramolecular parallel G-quadruplex has been identified in MET promoter. It acts as a repressor in regulating MET expression. However, the full guanine-rich region in MET promoter forms a hybrid parallel/antiparallel G-quadruplex structure under physiological conditions, which means there are some antiparallel and hybrid parallel/antiparallel G-quadruplex structures in this region. In the present study, our data indicate that g3-5 truncation adopts an intramolecular hybrid parallel/antiparallel G-quadruplex under physiological conditions in vitro. The g3-5 G-quadruplex structure significantly stops polymerization by Klenow fragment in K+ buffer. Furthermore, the results of circular dichroism (CD) spectra and polymerase stop assay directly demonstrate that the G-quadruplex structure in g3-5 fragment can be stabilized by the G-quadruplex ligand TMPyP4 (5,10,15,20-tetra-(N-methyl-4-pyridyl) porphine). But the dual luciferase assay indicates TMPyP4 has no effect on the formation of g3-5 G-quadruplex in HepG2 cells. The findings in the present study will enrich our understanding of the G-quadruplex formation in proto-oncogene promoters and the mechanisms of gene expression regulation.
Rui Li, Qi Li, Xiao-Lei Chu, Tao Tao, Lan Li, , Fang-You Gao
Published: 8 May 2018
Bioscience reports, Volume 38; https://doi.org/10.1042/bsr20170335

Abstract:
Synaptic plasticity plays a role during trace eyeblink conditioning (TEBC). Synaptophysin (Syn) is a major integral transmembrane protein, located particularly in the synaptic vesicles, and is considered a molecular marker of synapses. In addition, Syn immunoreactivity is an important indicator of synaptic plasticity. In the present study, we used immunohistochemical techniques to assess changes in Syn expression in the cerebellar interpositus nucleus (IN) of guinea pigs exposed to TEBC and pseudoconditioning. Additionally, we analyzed the relationship between Syn immunoreactivity and the percentage of trace-conditioned responses. Guinea pigs underwent trace conditioning or pseudoconditioning. Following two, six, or ten sessions, they were perfused and the cerebellum was removed for Syn immunohistochemical evaluation. After sessions 6 and 10, a significant increase in conditioned response (CR) percentage was observed in the trace-conditioned group, with the CR percentage reaching the learning criteria following session 10. Besides, for trace-conditioned animals, the Syn expression in IN was found significantly up-regulated after session 10 compared with pseudoconditioned ones. Our data suggest that the increase in Syn expression links to synaptic plasticity changes in the cerebellar IN and provides a histological substrate in the IN relating to TEBC training. The changing trend of Syn immunoreactivity in the IN is associated with CR percentage.
Anqiang Yang, , Xiaobing Yang
Published: 15 December 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170871

Abstract:
Human glioma is one of the malignant tumors of the central nervous system (CNS). Its prognosis is poor, which is due to its genetic heterogeneity and our poor understanding of its underlying molecular mechanisms. The present study aimed to assess the relationship between plasmacytoma variant translocation 1 (PVT1) and enhancer of zeste homolog 2 (EZH2), and their effects on the proliferation and invasion of glioma cells. The expression levels of PVT1 and EZH2 in human glioma tissues and cell lines were measured using quantitative RT-PCR (qRT-PCR). Then, after siRNA-PVT1 and entire PVT1 sequence vector transfection, we determined the regulation roles of PVT1 in the proliferation, apoptosis, migration, and invasion of glioma cells. We found that the expression levels of both PVT1 and EZH2 were up-regulated in human glioma tissues and cell lines, and positively correlated with glioma malignancy. And, silencing of PVT1 expression resulted in decreased proliferation, increased apoptosis, and decreased migration and invasion. In addition, exogenous PVT1 led to increased EZH2 expression and increased proliferation and induced proliferation and invasion. These data inferred that long non-coding RNA PVT1 could be served as an indicator of glioma prognosis, and PVT1–EZH2 regulatory pathway may be a novel therapeutic target for treating glioma.
Shujie Lai, Yan Li, Yi Kuang, Hongli Cui, Yang Yang, Wenjing Sun, Kaijun Liu, Ngfeng Chen, Qixian Yan,
Published: 23 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170869

Abstract:
Protein kinase C δ (PKCδ) plays an important role in nonalcoholic fatty liver disease (NAFLD), however, the mechanism remains unknown. The present study explored the role of PKCδ in NAFLD development and investigated the relationships between PKCδ, calcium homeostasis, and endoplasmic reticulum (ER) stress (ERS). Hepatic steatosis cell model was induced by palmitic acid (PA) in L02 cells. Lipid accretion was evaluated using Oil Red O staining and a triglyceride (TG) detection kit. PKCδ was down-regulated by siRNA. RT-PCR and Western blotting were used to detect the expression of ERS markers. The fluorescence of Ca2+ influx was recorded using confocal microscopy. Sarco-ER Ca2+-ATPase (SERCA) activity was measured by ultramicro-ATP enzyme test kit. PA treatment induced lipid accretion in L02 cells, destroyed the ER structure, and increased PKCδ activation in a time-dependent manner. Further, PA treatment significantly increased the expression of ERS markers, Ig heavy chain binding protein (Bip), and homologous proteins of CCAAT-enhancer binding proteins (CHOP). PKCδ silencing down-regulated Bip and CHOP expression, indicating a successful alleviation of ERS. The increased calcium storage induced by PA stimulation was significantly decreased in L02 cells treated with PKCδ siRNA compared with the negative control. Moreover, diminished SERCA activity caused by PA was recovered in PKCδ siRNA transfected cells. To the best of our knowledge, this is the first report demonstrating that the inhibition of PKCδ alleviates ERS by enhancing SERCA activity and stabilizing calcium homeostasis.
Angélique Mottais, Tony Le Gall, Yann Sibiril, Julian Ravel, Véronique Laurent, Frédérique D’Arbonneau,
Published: 17 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20160618

Abstract:
The pathophysiology of obstructive pulmonary diseases, such as cystic fibrosis (CF), leads to the development of chronic infections in the respiratory tract. Thus, the symptomatic management of the disease requires, in particular, repetitive antibiotherapy. Besides these antibacterial treatments, certain pathologies, such as CF or chronic obstructive pulmonary disease (COPD), require the intake of many drugs. This simultaneous absorption may lead to undesirable drug interactions. For example, Orkambi® (lumacaftor/Ivacaftor, Vertex), a pharmacological drug employed to treat F508del patients, cannot be used with antibiotics such as rifampicin or rifabutin (rifamycin family) which are necessary to treat Mycobacteriaceae. As far as gene therapy is concerned, bacteria and/or biofilm in the airways present an additional barrier for gene transfer. Thus, aerosol administration of nanoparticles have to overcome many obstacles before allowing cellular penetration of therapeutic compounds. This review focusses on the development of aerosol formulations adapted to the respiratory tract and its multiple barriers. Then, formulations that are currently used in clinical applications are summarized depending on the active molecule delivered. Finally, we focus on new therapeutic approaches to reduce possible drug interactions by transferring the antibacterial activity to the nanocarrier while ensuring the transfection efficiency.
Hyo Jung Kim, Ki-Young Lee, , Bong-Jin Lee
Published: 17 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171106

Abstract:
The DJ-1/ThiJ/PfpI superfamily of proteins is highly conserved across all biological kingdoms showing divergent multifunctions, such as chaperone, catalase, protease, and kinase. The common theme of these functions is responding to and managing various cellular stresses. DJ-1/ThiJ/PfpI superfamily members are classified into three subfamilies according to their quaternary structure (DJ-1-, YhbO-, and Hsp-types). The Hsp-type subfamily includes Hsp31, a chaperone and glyoxalase III. SAV0551, an Hsp-type subfamily member from Staphylococcus aureus, is a hypothetical protein that is predicted as Hsp31. Thus, to reveal the function and reaction mechanism of SAV0551, the crystal structure of SAV0551 was determined. The overall folds in SAV0551 are similar to other members of the Hsp-type subfamily. We have shown that SAV0551 functions as a chaperone and that the surface structure is crucial for holding unfolded substrates. As many DJ-1/ThiJ/PfpI superfamily proteins have been characterized as glyoxalase III, our study also demonstrates SAV0551 as a glyoxalase III that is independent of any cofactors. The reaction mechanism was evaluated via a glyoxylate-bound structure that mimics the hemithioacetal reaction intermediate. We have confirmed that the components required for reaction are present in the structure, including a catalytic triad for a catalytic action, His78 as a base, and a water molecule for hydrolysis. Our functional studies based on the crystal structures of native and glyoxylate-bound SAV0551 will provide a better understanding of the reaction mechanism of a chaperone and glyoxalase III.
Xiao Juan Wang, Jing Jing Xiao, Lei Liu, Hong Chao Jiao,
Published: 17 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171056

Abstract:
The ubiquitin-proteasome system (UPS)-dependent proteolysis plays a major role in the muscle catabolic action of glucocorticoids (GCs). Atrogin-1 and muscle-specific RING finger protein 1 (MuRF1), two E3 ubiquitin ligases, are uniquely expressed in muscle. It has been previously demonstrated that GC treatment induced MuRF1 and atrogin-1 overexpression. However, it is yet unclear whether the higher pharmacological dose of GCs induced muscle protein catabolism through MuRF1 and atrogin-1. In the present study, the role of atrogin-1 and MuRF1 in C2C12 cells protein metabolism during excessive dexamethasone (DEX) was studied. The involvement of Akt/forkhead box O1 (FoXO1) signaling pathway and the cross-talk between anabolic regulator mammalian target of rapamycin (mTOR) and catabolic regulator FoXO1 were investigated. High concentration of DEX increased MuRF1 protein level in a time-dependent fashion (P<0.05), while had no detectable effect on atrogin-1 protein (P>0.05). FoXO1/3a (Thr24/32) phosphorylation was enhanced (P<0.05), mTOR phosphorylation was suppressed (P<0.05), while Akt protein expression was not affected (P>0.05) by DEX. RU486 treatment inhibited the DEX-induced increase of FoXO1/3a phosphorylation (P<0.05) and MuRF1 protein; LY294002 (LY) did not restore the stimulative effect of DEX on the FoXO1/3a phosphorylation (P>0.05), but inhibited the activation of MuRF1 protein induced by DEX (P<0.05); rapamycin (RAPA) inhibited the stimulative effect of DEX on the FoXO1/3a phosphorylation and MuRF1 protein (P<0.05).
Doo Nam Kim,
Published: 5 December 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170072

Abstract:
As cryo-electron microscopy (cryo-EM) enters mainstream structural biology, the demand for fitting methods is high. Here, we review existing flexible fitting methods for cryo-EM. We discuss their importance, potential concerns and assessment strategies. We aim to give readers concrete descriptions of cryo-EM flexible fitting methods with corresponding examples.
Ghanshyam S. Yadav, Sandeep K. Ravala, , Meghna Thakur, Abhishek Roy, Balvinder Singh, Subramanian Karthikeyan,
Published: 15 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171048

Abstract:
Guanylate kinase is an essential and conserved enzyme in nucleotide biosynthetic pathway that transfers phosphoryl group of ATP to GMP for yielding GDP. Here, we report the phosphorylation of guanylate kinase from Mycobacterium tuberculosis (mGmk) by eukaryotic-type Ser/Thr kinase, PknA. Mass spectrometric studies identified Thr101 and Thr169 as phosphorylatable residues in mGmk. To evaluate the significance of phosphorylation in these threonines, two point (T101A and T169A) and one double (T101A-T169A) mutants were generated. The kinase assay with these mutant proteins revealed the major contribution of Thr169 compared with Thr101 in the phosphorylation of mGmk. Kinetic analysis indicated that p-mGmk was deficient in its enzymatic activity compared with that of its un-phosphorylated counterpart. Surprisingly, its phosphoablated (T169A) as well as phosphomimic (T169E) variants exhibited decreased activity as was observed with p-mGmk. Structural analysis suggested that phosphorylation of Thr169 might affect its interaction with Arg166, which is crucial for the functioning of mGmk. In fact, the R166A and R166K mutant proteins displayed a drastic decrease in enzymatic activity compared with that of the wild-type mGmk. Molecular dynamics (MD) studies of mGmk revealed that upon phosphorylation of Thr169, the interactions of Arg165/Arg166 with Glu158, Asp121 and residues of the loop in GMP-binding domain are perturbed. Taken together, our results illuminate the mechanistic insights into phosphorylation-mediated modulation of the catalytic activity of mGmk.
Ana Krhac Levacic, Stephan Morys,
Published: 31 October 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20160617

Abstract:
Nucleic acid molecules are important therapeutic agents in the field of antisense oligonucleotide, RNA interference, and gene therapies. Since nucleic acids are not able to cross cell membranes and enter efficiently into cells on their own, the development of efficient, safe, and precise delivery systems is the crucial challenge for development of nucleic acid therapeutics. For the delivery of nucleic acids to their intracellular site of action, either the cytosol or the nucleus, several extracellular and intracellular barriers have to be overcome. Multifunctional carriers may handle the different special requirements of each barrier. The complexity of such macromolecules however poses a new hurdle in medical translation, which is the chemical production in reproducible and well-defined form. Solid-phase assisted synthesis (SPS) presents a solution for this challenge. The current review provides an overview on the design and SPS of precise sequence-defined synthetic carriers for nucleic acid cargos.
Ligang Wang, Libo Wang, Zhibo Dai, Pei Wu, Huaizhang Shi, Shiguang Zhao
Published: 6 November 2017
Bioscience Reports, Volume 37; https://doi.org/10.1042/bsr20170942

Abstract:
Oxidative stress has been strongly implicated in the pathogenesis of traumatic brain injury (TBI). Mitochondrial ferritin (Ftmt) is reported to be closely related to oxidative stress. However, whether Ftmt is involved in TBI-induced oxidative stress and neurological deficits remains unknown. In the present study, the controlled cortical impact model was established in wild-type and Ftmt knockout mice as a TBI model. The Ftmt expression, oxidative stress, neurological deficits, and brain injury were measured. We found that Ftmt expression was gradually decreased from 3 to 14 days post-TBI, while oxidative stress was gradually increased, as evidenced by reduced GSH and superoxide dismutase levels and elevated malondialdehyde and nitric oxide levels. Interestingly, the extent of reduced Ftmt expression in the brain was linearly correlated with oxidative stress. Knockout of Ftmt significantly exacerbated TBI-induced oxidative stress, intracerebral hemorrhage, brain infarction, edema, neurological severity score, memory impairment, and neurological deficits. However, all these effects in Ftmt knockout mice were markedly mitigated by pharmacological inhibition of oxidative stress using an antioxidant, N-acetylcysteine. Taken together, these results reveal an important correlation between Ftmt and oxidative stress after TBI. Ftmt deficiency aggravates TBI-induced brain injuries and neurological deficits, which at least partially through increasing oxidative stress levels. Our data suggest that Ftmt may be a promising molecular target for the treatment of TBI.
Yanke Li, Fuqiang Zhang,
Published: 23 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171121

Abstract:
CTNNB1, encoding β-catenin, is a well-known tumor-related gene in the wnt signaling pathway. It has been reported that CTNNB1 polymorphisms are associated with cancer risk. However, the data were inconsistent. In this article, we conducted a systematic review for the researches related to the association of single nucleotide polymorphisms (SNPs) in CTNNB1 with overall cancer risk. Meanwhile, a series of inclusion and exclusion criteria were set to select articles for quantitative analysis. Consequently, eight case-control studies containing 4388 cases and 4477 controls were included in a meta-analysis of four highly studied CTNNB1 SNPs (rs1798802 A/G, rs4135385 A/G, rs11564475 A/G, and rs2293303 C/T). The association between each SNP and cancer risk was estimated by calculating odds ratios (ORs) and their 95% confidence intervals (95%CIs). The results showed rs1798802 (AA compared with GG: P=0.044, OR=0.72) and rs2293303 (TT compared with CC: P=0.002, OR=2.86; recessive model: P=0.006, OR=2.91; T compared with C: P=0.004, OR=1.19) polymorphisms were associated with overall cancer risk. In stratified analysis, rs4135385 polymorphism was found to elevate the risk in Caucasian or in gastrointestinal cancer subgroup. Additionally, rs2293303 conferred to an increased cancer risk when the source of control groups was hospital-based (HB). In conclusion, the three CTNNB1 SNPs were suggested to have the potential to be novel biomarkers for risk prediction of cancer in overall population or some specific subgroups. Our study could provide research clues for further related investigations.
Yao Tang, Qi-Hang Cai, Yong-Jian Wang, Shao-Hua Fan, Zi-Feng Zhang, Meng-Qi Xiao, Jin-Yu Zhu, Dong-Mei Wu, ,
Published: 15 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170803

Abstract:
During the present study, we explored the protective effects of autophagy on endoplasmic reticulum (ER) stress (ERS) induced apoptosis belonging to alveolar epithelial cells (AECs) in rat models with chronic obstructive pulmonary disease (COPD). Fifty-six 12-week-old male Sprague–Dawley (SD) rats were randomly assigned into the COPD group (rats exposed to cigarette smoke (CS)), the 3-methyladenine (3-MA) intervention group (COPD rats were administrated with 10 mg/kg autophagy inhibitors), the chloroquine (CQ)-intervention group (COPD rats were administrated 40 mg/kg CQ), and the control group (rats breathed in normal saline). The forced expiratory volume in 0.3 s/forced vital capacity (FEV0.3/FVC%), inspiratory resistance (RI), and dynamic lung compliance (Cdyn) were measured and recorded. The expressions of PKR-like ER kinase (PERK) and CCAAT/enhancer-binding protein-homologous protein (CHOP) were detected by immunohistochemistry. The cell apoptotic rates of AECs were analyzed by terminal deoxynucleotidyl transferase (TdT) mediated dUTP-biotin nick end-labeling (TUNEL) staining. The expression levels of light chain 3 (LC3-II), p62, Beclin-1, ATG5, ATG7, Caspase-12, and Caspase-3 were detected by Western blotting. Results showed that the COPD group exhibited a lower FEV0.3/FVC% and Cdyn, and a higher RI than the control group. Compared with the control group, the integrated optical density (IOD) values of PERK and CHOP, the apoptotic rate of AECs, and expressions of LC3-II, Beclin-1, ATG5, ATG7, Caspase-3, and Caspase-12 expressions were significantly higher, whereas p62 expression was significantly lower in the COPD group. Based on the results obtained during the present study, it became clear that the inhibition of autophagy could attenuate the ERS-induced apoptosis of AECs in rats with COPD.
Muhammad Hussain, Peng Chen, Guang Mei, , Hongwu Du
Published: 19 January 2018
Bioscience reports, Volume 38; https://doi.org/10.1042/bsr20170778

Abstract:
The autoantibodies profile of Behçet’s disease (BD) is yet incompletely understood. Annexins are a family of highly conserved proteins which are involved in some human autoimmune diseases. Autoantibodies directed toward Annexin A1 and A2 are involved in BD pathology, but correlation in their clinical role is controversial. The aim of our study is to estimate and evaluate the expression correlation between Annexin A1 and A2 autoantibodies in BD patients. We have designed and implemented different technical approaches to prove the hypothesis. First, bioinformatics tools such as amino acid sequence alignment, epitope prediction analysis, and 3D structural comparison were performed to find out the correlation between Annexin A1 and A2. Second, amplification of the corresponding gene by RT-PCR, then cloning, and purification techniques were applied to acquire the recombinant Annexin A1. Third, the target protein band was excised from gel electrophoresis, digested with trypsin, and analyzed by MALDI-TOF/TOF. Finally, in-house ELISA was developed to determine the induced anti-Annexin A1 autoantibodies in BD patients. Obtained results demonstrated that the BD serum reactivity against recombinant Annexin A1 was significantly higher as compared with healthy control (HC) (P<0.001). Moreover, bioassay results of Annexin A1 and A2 also showed the presence, absence, and independent coexistence of autoantibodies, when reacted with BD sera. In conclusion, Annexin A1 has a similar immunogenic expression and correlation with its analog Annexin A2 and their association may be a novel immune target of BD in Han Chinese population.
Published: 21 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171039

Abstract:
Breast cancer subtypes such as triple-negative that lack the expression of oestrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor 2 receptor (HER2), remain poorly clinically managed due to a lack of therapeutic targets. This necessitates identification and validation of novel targets. Suppression of Popeye domain-containing protein 1 (POPDC1) is known to promote tumorigenesis and correlate to poor clinical outcomes in various cancers, and also promotes cardiac and skeletal muscle pathologies. It remains to be established whether POPDC1 is dysregulated in breast cancer, and whether overcoming the dysregulation of POPDC1 could present a potential therapeutic strategy to inhibit breast tumorigenesis. We assessed the potential of POPDC1 as a novel target for inhibiting breast cancer cell migration and proliferation. POPDC1 was significantly suppressed with reduced cell membrane localization in breast cancer cells. Furthermore, functional suppression of POPDC1 promoted breast cancer cell migration and proliferation, which were inhibited by POPDC1 overexpression. Finally, cAMP interacts with POPDC1 and up-regulates its expression in breast cancer cells. These findings suggest that POPDC1 plays a role in breast tumorigenesis and represents a potential therapeutic target or biomarker in breast cancer medicine.
, Si-Jun Yang, Hong-Min Chen, Fang-Fang Peng, Hong Yu, Joan C. Kreprinsky,
Published: 27 October 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171061

Abstract:
Little is known about the cross-talk between parathyroid hormone (PTH) related protein (PTHrP) and TGF-β1 in mesangial cells (MCs). Our results showed that PTHrP treatment (≤3 h) induced internalization of PTH1R (PTH/PTHrP receptor)–TβRII (TGF-β type 2 receptor) complex and suppressed TGF-β1-mediated Smad2/3 activation and fibronectin (FN) up-regulation. However, prolonged PTHrP treatment (12–48 h) failed to induce PTH1R–TβRII association and internalization. Total protein levels of PTH1R and TβRII were unaffected by PTHrP treatment. These results suggest that internalization of PTH1R and TβRII after short PTHrP treatment might not lead to their proteolytic destruction, allowing the receptors to be recycled back to the plasma membrane during prolonged PTHrP exposure. Receptor re-expression at the cell surface allows PTHrP to switch from its initial inhibitory effect to promote induction of FN. Our study thus demonstrates the dual roles of PTHrP on TGF-β1 signaling and FN up-regulation for the first time in glomerular MCs. These data also provided new insights to guide development of therapy for diabetic kidney disease (DKD).
Zhengqiang Mao, Hang Li, Botao Du, Kai Cui, Yuguang Xing, Xiangyu Zhao,
Published: 6 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171070

Abstract:
Gastric cancer (GC) is one of the most prevalent gastrointestinal malignancies. Long noncoding RNA (lncRNA) DANCR is a newly identified oncogenic lncRNA. However, the functional role and underlying molecular mechanisms of DANCR involved in GC progress remain unclear. In the present study, we investigated the biological function and underlying mechanisms of DANCR in GC cell migration and invasion. The results showed that knockdown of DANCR inhibited migration and invasion of GC cells, whereas overexpression of DANCR showed the opposite effect. Further investigation demonstrated that lncRNA-LET was a bona fide target gene of DANCR. In addition, high DANCR and low lncRNA-LET were significantly correlated with lymph node metastasis and late clinical stage. DANCR associated with EZH2 and HDAC3 to epigenetically silence lncRNA-LET and then regulated GC migration and invasion. Taken together, these findings indicate an important role for DANCR–lncRNA-LET axis in GC cell migration and invasion, and reveal a novel epigenetic mechanism for lncRNA-LET silencing.
, Jia-Xin Zhang, Jing-Ping Wu, Ying-Hua Xu
Published: 12 December 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170818

Abstract:
Ovarian cancer is one of the most lethal gynecologic malignancies in women. Isoflurane is one of the volatile anesthetics used extensively for inhalational anesthesia and gynecological surgery. However, the effects of isoflurane on ovarian cancer have not been fully elucidated. It is widely studied that one of the biochemical fingerprints of cancer cells is the altered energy metabolism which is characterized by preferential dependence on glycolysis for energy production in an oxygen-independent manner. In the present study, we explored the roles of isoflurane in the regulation of cellular metabolism of ovarian cancer cells. We observed the glucose uptake, lactate production and extracellular acidification of two ovarian cancer cell lines, SKOV3 and TOV21G were significantly stimulated by isoflurane treatments at 1 and 2 h. The glycolysis enzymes, HK2, PKM2, and LDHA were up-regulated by isoflurane. We report that miR-21 was induced by isoflurane treatments in ovarian cancer cells, leading to the elevated AKT phosphorylation and up-regulation of glycolysis enzymes. In contrast, the mitochondrial functions were suppressed by isoflurane treatments: the oxygen consumption, mitochondrial membrane potential (MMP), and activities of complex I, II, and IV on the electron transport chain were significantly decreased under isoflurane treatments. Importantly, ovarian cancer cells become hypersensitive to glycolysis inhibitors with isoflurane pretreatments. The present study demonstrates that isoflurane treatments drive a metabolic switch of ovarian cancer cells and contributes to the discovery and development of clinical therapeutic agents against ovarian cancer.
Published: 27 October 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170240

Abstract:
Background: Earlier studies have shown that interlukin-10 (IL-10) -1082 A>G gene polymorphism is implicated in susceptibility to pulmonary tuberculosis (PTB), but their results are inconsistent and inconclusive. In the present study, a meta-analysis was performed to analyze the potential association between IL-10 -1082 A>G gene polymorphism and PTB susceptibility. Methods: A quantitative synthesis was done using PubMed (Medline), EMBASE, and Google Scholar web databases search and meta-analysis was performed by calculating pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) for all the genetic models. Results: A total of 22 eligible studies comprising 4956 PTB cases and 6428 healthy controls were included in the analysis. We did not observe any increased or decreased risk of PTB in allelic contrast (G vs. A: P=0.985; OR = 1.001, 95% CI = 0.863–1.162), homozygous (GG vs. AA: P=0.889; OR = 1.029, 95% CI = 0.692–1.529), heterozygous (GA vs. AA: P=0.244; OR = 0.906, 95% CI = 0.767–1.070), dominant (GG + AG vs. AA: P=0.357; OR = 1.196, 95% CI = 0.817–1.752), and recessive (GG vs. AA + AG: P=0.364; OR = 0.921, 95% CI = 0.771–1.100) genetic models. Likewise, no association of IL-10 -1082 A>G polymorphism with PTB risk was observed in Asian and African population for all the genetic models. Interestingly, the dominant model (GG + AG vs. AA: P=0.004; OR = 1.694, 95% CI = 1.183–2.425) demonstrated increased risk of PTB in Caucasian population. Conclusions: This meta-analysis concludes that IL-10 -1082 A>G gene polymorphism is not significantly associated with overall, Asian and African population. However, this polymorphism is associated with Caucasian population.
Yan Liang, Yuanyuan Wu, Xuedan Chen, Shixin Zhang, Kai Wang, Xingying Guan, Kang Yang, Juan Li,
Published: 17 October 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171019

Abstract:
Esophageal cancer is one of the leading causes of cancer-related mortality because of poor prognosis. Long noncoding RNAs (lncRNAs) have been gradually demonstrated to play critical roles in cancer development. We identified a novel long noncoding RNA named linc00460 by microarray analysis using esophageal squamous cell carcinoma (ESCC) clinical samples, which has not been studied before. Our research indicated that linc00460 was overexpressed in the majority of tumor tissues and ESCC cell lines. Linc00460 expression was positively correlated with ESCC TNM stage, lymph node metastasis, and predicted poor prognosis. In vitro experiments showed that linc00460 depletion suppressed ESCC cell growth through regulating cell proliferation and cell cycle; in additional, linc00460 depletion accelerated ESCC cell apoptosis. We further revealed that linc00460 overexpression was manipulated by transcriptional co-activator CBP/P300 through histone acetylation. Given the high expression and important biological functions of linc00460, we suggest that linc00460 works as an oncogene and might be a valuable prognostic biomarker for ESCC diagnosis and treatment.
, Pengfei Zheng, Huijun Fan, Haiyan Wang, Wenzhong Xu, Wenyan Zhou
Published: 9 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171137

Abstract:
Doxorubicin (DOX) resistance in breast cancer largely results from the breast cancer stem cell like cells (BCSCs) which could be targetted to improve the efficacy of chemotherapy. Cell permeabilization using microbubbles (MBs) and ultrasound (US) have the potential for delivering molecules into the cytoplasm. We aim to evaluate a new methodology of US on BCSCs. First, our findings indicated that ALDHA1+ spheres which were derived from fresh primary breast cancer samples displayed stem cell like features and were resistant to DOX. In patient cohort, we revealed the presence of a variable fraction of ALDHA1+cells in nine out of ten. We, for the first time, showed a new US-MB treatment condition which could be used on ALDHA1+ BCSCs by fluorescence measurement and calcein assay. Next, we demonstrated the efficacy of combined treatment on human BCSCs in vitro and in vivo using DOX and US-MB: the combined treatment with much reduced drug dosage significantly suppressed the stem cell like features of BCSCs and induced BCSCs apoptosis. Furthermore, we suggested that decreased ABCG2 level might be one of the mechanisms by which US-MB medicated DOX treatment. In conclusion, this new US-MB treatment condition has clinical potential in breast cancer therapy by targetting BCSCs; thereby holding benefits for breast cancer patients.
Published: 27 October 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170806

Abstract:
Purpose: Earlier studies have shown that tumor necrosis factor (TNF) -308 G>A (rs1800629) gene polymorphism is implicated in the susceptibility to leprosy, but results were inconsistent. Methods: A meta-analysis of 14 studies involving 3327 leprosy cases and 3203 controls was performed to appraise the association of TNF -308 G>A polymorphism with leprosy using MEDLINE (PUBMED), EMBASE, and Google Scholar web databases. Results: Overall, no significant association was observed in allelic (A vs. G: P=0.068; OR = 0.836, 95% CI = 0.689–1.013), homozygous (AA vs. GG: P=0.394; OR = 0.810, 95% CI = 0.499–1.315), heterozygous (GA vs. GG: P=0.059; OR = 0.780, 95% CI = 0.603–1.010), dominant (AA + GA vs. GG: P=0.067; OR = 0.797, 95% CI = 0.625–1.016), and recessive (AA vs. GG + GA: P=0.594; OR = 0.877, 95% CI = 0.542– 1.420) genetic models. Subgroup analysis showed no association in Asians. Whereas, reduced risk was found in allelic contrast (A vs. G: P=0.014; OR = 0.832, 95% CI = 0.718–0.963) and dominant models (AA + GA vs. GG: P=0.004; OR = 0.790, 95% CI = 0.673–0.928) of the mixed population. Conclusions: TNF -308 G>A polymorphism is not associated with leprosy risk in the overall population. However, subgroup analysis demonstrated protective effect of the said polymorphism in leprosy risk in the Latin American population, but showed no association in the Asians.
Xin-Rui Han, Xin Wen, Yan-Yi Li, Shao-Hua Fan, Zi-Feng Zhang, Hong Li, Xing-Feng Sun, Gui-Qi Geng, Shen Sun, Shao-Qiang Huang, et al.
Published: 24 October 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170915

Abstract:
The present study aimed to explore the effects of different anesthetic methods on cellular immune function and prognosis of patients with ovarian cancer (OC) undergoing oophorectomy. A total of 167 patients who received general anesthesia (GA) treatment (GA group) and 154 patients who received combined general/epidural anesthesia (GEA) treatment (GEA group) were collected retrospectively. Each group selected 124 patients that met the inclusion and exclusion criteria for further study. ELISA and radioimmunoassay were employed to detect levels of IL-2, TNF-α, and CA-125. The rates of tumor-red cell rosette (RTRR), red cell immune complex rosette (RRICR), and red cell C3b receptor rosette (RRCR) were also measured. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR) were determined by hemodynamics. The levels of tumor necrosis factor-α (TNF-α) and interleukin (IL)-2 decreased at 1 h intraoperation (T2), but increased 24-h post surgery (T3). The levels of TNF-α and IL-2 were recovered faster in the GEA group than in the GA group. The GA group exhibited greater levels of CA-125 expression than in the GEA group. The levels of RTRR, RRICR, and RRCR; ratios of CD3+, CD4+, CD4+/CD8+, CD16+, and CD56+ at 30 min after anesthesia (T1), T2, T3 and 48 h after the operation (T4) and levels of SBP, DBP, and HR at T1, T2, and T3 displayed increased levels in the GEA group than in the GA group. At 72-h post surgery (T5), the 5-year survival rate significantly increased in the GEA group compared with the GA group. GEA to be more suitable than GA for surgery on OC patients.
, Sha Liu, Xiaochun Zhao, Xiao Ma, Guozhen Gao, Li Yu, Dexiong Yan, Hao Dong, Weijing Sun
Published: 6 November 2017
Bioscience Reports, Volume 37; https://doi.org/10.1042/bsr20171031

Abstract:
Melanoma is the most malignant skin cancer, which account for most of skin-cancer-related deaths. Long noncoding RNA (lncRNA) is a class of noncoding RNAs with crucial roles in many cancers. However, the roles of lncRNAs in melanoma have not been well studied. In the present study, using public available data and clinical tissues samples, we found that lncRNA ILF3-AS1 is up-regulated in melanoma tissues and cell lines, and correlated with poor prognosis of melanoma patients. Functional experiments showed that knockdown of ILF3-AS1 inhibits melanoma cell proliferation, migration, and invasion. Mechanistically, we found that ILF3-AS1 interacts with EZH2, promotes the binding of EZH2 to the miR-200b/a/429 promoter, and represses miR-200b/a/429 expression. The expression of ILF3-AS1 is negatively correlated with that of miR-200b/a/429 in melanoma tissues. Moreover, inhibition of miR-200b/a/429 abrogates the biological roles of ILF3-AS1 knockdown on melanoma cell proliferation, migration, and invasion. In conclusion, these results demonstrate that melanoma-upregulated lncRNA ILF3-AS1 promotes cell proliferation, migration, and invasion via negatively regulating miR-200b/a/429, and imply that ILF3-AS1 may be a potential prognostic biomarker and therapeutic target for melanoma.
Pranita Hanpude, Sushmita Bhattacharya, Abhishek Kumar Singh,
Published: 27 October 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171099

Abstract:
BRCA1-associated protein 1 (BAP1) is a nuclear localizing UCH, having tumor suppressor activity and is widely involved in many crucial cellular processes. BAP1 has garnered attention for its links with cancer, however, the molecular mechanism in the regulation of cancer by BAP1 has not been established. Amongst the four UCHs, only BAP1 and UCHL5 are able to hydrolyze small and large ubiquitin adducts but UCHL5 hydrolyzes only when it is present in the PA700 complex of the proteasome. The ability of BAP1 to cleave large ubiquitin derivatives is because of its relatively longer active-site crossover loop than other UCHs. The mechanism of ubiquitin recognition has not been studied for BAP1. The comparative enzymatic analysis of ubiquitin C-terminal hydrolase L1 (UCHL1), ubiquitin C-terminal hydrolase L3 (UCHL3), ubiquitin C-terminal hydrolase L5 (UCHL5N), and BAP1N has confirmed that enzymatically BAP1 is similar to UCHL5, which corroborates with the bioinformatics analysis done earlier. We have undertaken extensive mutational approaches to gain mechanistic insight into BAP1–ubiquitin interaction. Based on the homology-modeled BAP1 structure, we have identified a few BAP1 residues which possibly play a crucial role in ubiquitin interaction of which a few mutations have been identified in many cancers. Our comparative thermodynamic analysis reveals that BAP1–ubiquitin interaction is majorly driven by entropy factor which is unique amongst UCHs. Our study sheds light on BAP1 interaction with ubiquitin, which will be useful in understanding its enzymatic function.
Qi Wu, Juanjuan Li, Si Sun, Xinyue Chen, Hanpu Zhang, Bei Li, Shengrong Sun
Published: 24 October 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171072

Abstract:
The crucial interplay between metabolic remodeling and the epigenetics could contribute to promote cancer progression. A remarkable association within interaction, LKB1 has been reported, suggesting that the expression of key enzymes involving de novo serine synthesis and DNA methyltransferases like DNMT1 and DNMT3A increase LKB1-deficiency cells. However, the complex interactional link between metabolic remodeling and the epigenetics is still unclear. Hence, we focus on the relationship between YAP/TAZ and serine metabolism to control methylation of DNA or histone in breast cancer with LKB1 deficiency. We hypothesize that YAP/TAZ may have the function to activate key enzymes involving serine metabolism like PSPH and up-regulate the amino acid transporters to supply sources of serine synthesis through activation of C-MYC with TEAD1. Further, we speculate that YAP/TAZ in dependent of FOS may promote DNMT1 and subsequently mediate DNMT1–G9A complex involving serine metabolism and the methylation of DNA and histone. We hope that our study will stimulate further studies and a new targeted therapy and early medical intervention for YAP/TAZ could be a useful option for breast cancer cases complicated with LKB1 deficiency.
Shu Yang, Bo Wu, Haimei Sun, Tingyi Sun, Kai Han, Dandan Li, Fengqing Ji, ,
Published: 27 October 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170776

Abstract:
Diabetic gastroparesis is a common complication of diabetes mellitus (DM) that is characterized by decreased serum insulin and insulin-like growth factor-1 (IGF-1). Despite the fact that insulin treatment not glycemic control potently accelerated gastric emptying in type 1 DM patients, the role of insulin/InsR and IGF-1/IGF-1R signaling in diabetic gastroparesis remains incompletely elucidated. In the present study, type 1 DM mice were established and treated with insulin or Voglibose for 8 weeks. The gastric emptying was delayed from DM week 4 when the gastric InsR and IGF-1R were declined. Meanwhile, the gastric choline acetyltransferase (ChAT) was significantly reduced and the myenteric cholinergic neurones and their fibers were significantly diminished. The production of stem cell factor (SCF) was dramatically repressed in the gastric smooth muscles in DM week 6. TWereafter, interstitial cells of Cajal (ICC) were clearly lost and their networks were impaired in DM week 8. Significantly, compared with Voglibose, an 8-week treatment with insulin more efficiently delayed diabetic gastroparesis development by protecting the myenteric cholinergic neurones and ICC. In conclusion, diabetic gastroparesis was an aggressive process due to the successive damages of myenteric cholinergic neurones and ICC by impairing the insulin/InsR and IGF-1/IGF-1R signaling. Insulin therapy in the early stage may delay diabetic gastroparesis.
, Rui Wang, Hao Wang, Hong-Gang Xu
Published: 9 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170804

Abstract:
The present study aims to assess coculture of allogenic decalcified bone matrix (DBM) and bone marrow mesenchymal stem cells (BMSCs) in the knee joint cavity of rabbits for cartilage tissue engineering. Rabbits were assigned to an in vitro group, an in vivo group, and a blank control group. At the 4th, 8th, and 12th week, samples from all groups were collected for hematoxylin–eosin (HE) staining and streptavidin–peroxidase (SP) method. The morphological analysis software was used to calculate the average absorbance value (A value). SP and flow cytometry demonstrated that BMSCs were induced into chondrocytes. DBM scaffold showed honeycomb-shaped porous and three-dimensional structure, while the surface pores are interlinked with the deep pores. At the 4th week, in the blank control group, DBM scaffold structure was clear, and cells analogous to chondrocytes were scattered in the interior of DBM scaffolds. At the 8th week, in the in vivo group, there were a large amount of cells, mainly mature chondrocytes, and the DBM scaffolds were partially absorbed. At the 12th week, in the in vitro group, the interior of scaffolds was filled up with chondrocytes with partial fibrosis, but arranged in disorder. In the in vivo group, the chondrocytes completely infiltrated into the interior of scaffolds and were arranged in certain stress direction. The in vivo group showed higher A value than the in vitro and blank control groups at each time point. Allogenic DBM combined BMSCs in the knee joint cavity of rabbits could provide better tissue-engineered cartilage than that cultivated in vitro.
Ling-Ping Zhu, Yun-Jie He, Jun-Chen Hou, Xiu Chen, Si-Ying Zhou, Su-Jin Yang, Jian Li, He-Da Zhang, Jia-Hua Hu, Shan-Liang Zhong, et al.
Published: 24 October 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20170750

Abstract:
Circular RNAs (circRNAs) are recently regarded as a naturally forming family of widespread and diverse endogenous noncoding RNAs (ncRNAs) that may regulate gene expression in mammals. At present, above 30000 circRNAs have already been found, with their unique structures to maintain stability more easily than linear RNAs. Several previous literatures stressed on the important role of circRNAs, whose expression was relatively correlated with patients’ clinical characteristics and grade, in the carcinogenesis of cancer. CircRNAs are involved in many regulatory bioprocesses of malignance, including cell cycle, tumorigenesis, invasion, metastasis, apoptosis, vascularization, through adsorbing RNA as a sponge, binding to RNA-binding protein (RBP), modulating transcription, or influencing translation. Therefore, it is inevitable to further study the interactions between circRNAs and tumors and to develop novel circRNAs as molecular markers or potential targets, which will provide promising applications in early diagnosis, therapeutic evaluation, prognosis prediction of tumors and even gene therapy for tumors.
Zheng Ma, Zengguang Qi, Zhengfei Shan, Jiangsong Li, Jing Yang, Zhonghua Xu
Published: 15 November 2017
Bioscience reports, Volume 37; https://doi.org/10.1042/bsr20171082

Abstract:
The purpose of the study is to investigate the correlation between the expression of C-reactive protein (CRP) and autophagy-related 9B (ATG9B) and pathological features of clear cell renal cell carcinoma (CCRCC) patients. We also intended to explore the effects of manipulated expression of CRP and ATG9B on the apoptosis and cell cycle progression of CCRCC cell line. ATG9B expression in CCRCC tissues and adjacent renal tissues was analyzed by immunohistochemistry (IHC). Gene expression was determined at transcription and translational levels using real-time quantitative PCR (RT-qPCR) and Western blot. The association between CRP/ATG9B expression and clinical-pathological parameters including age, gender, pathological grades, TNM stage and distant metastasis of the patients was assessed by correlation analysis. siRNA and overexpression plasmids construction were used to manipulate the expression of CRP in human CCRCC cell line 786-O. Cell apoptosis and cell cycle progression were determined using flow cytometry (FCM) and Hoechst 33258 staining. CRP expression correlates with ATG9B expression. The expression of CRP and ATG9B are significantly correlated with TNM staging, distant metastasis, and survival time of CCRCC patients. A high-level of CRP indicates a poor overall survival (OS). In addition, CRP expression influences cell cycle and apoptosis of CCRCC cells. The study reveals that CRP might be a CCRCC development promoter. In addition, there is a close relationship between CRP and ATG9B in CCRCC carcinogenesis.
Page of 117
Articles per Page
by
Show export options
  Select all
Back to Top Top