Refine Search

New Search

Results in Journal Advanced Science: 3,577

(searched for: journal_id:(572164))
Page of 72
Articles per Page
by
Show export options
  Select all
Muhammad Ahmad Mudassir, Hafiz Zohaib Aslam, , ,
Published: 22 September 2021
Abstract:
Emulsion templating is at the forefront of producing a wide array of porous materials that offers interconnected porous structure, easy permeability, homogeneous flow-through, high diffusion rates, convective mass transfer, and direct accessibility to interact with atoms/ions/molecules throughout the exterior and interior of the bulk. These interesting features together with easily available ingredients, facile preparation methods, flexible pore-size tuning protocols, controlled surface modification strategies, good physicochemical and dimensional stability, lightweight, convenient processing and subsequent recovery, superior pollutants remediation/monitoring performance, and decent recyclability underscore the benchmark potential of the emulsion-templated porous materials in large-scale practical environmental applications. To this end, many research breakthroughs in emulsion templating technique witnessed by the recent achievements have been widely unfolded and currently being extensively explored to address many of the environmental challenges. Taking into account the burgeoning progress of the emulsion-templated porous materials in the environmental field, this review article provides a conceptual overview of emulsions and emulsion templating technique, sums up the general procedures to design and fabricate many state-of-the-art emulsion-templated porous materials, and presents a critical overview of their marked momentum in adsorption, separation, disinfection, catalysis/degradation, capture, and sensing of the inorganic, organic and biological contaminants in water and air.
Yuan Chen, Noah R. Sundah, Nicholas R. Y. Ho, Auginia Natalia, Yu Liu, Qing Hao Miow, Yu Wang, Darius L. L. Beh, Ka Lip Chew, Douglas Chan, et al.
Published: 22 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170116

Abstract:
Programmable Detection of SARS-CoV-2
Lucas Schirmer, Passant Atallah, Uwe Freudenberg, Carsten Werner
Published: 22 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170114

Jianhui Wang, QiFeng Zheng, Mingming Fang, Seongjae Ko, Yuki Yamada, Atsuo Yamada
Published: 22 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170117

Hua Liu, Zhengwei Cai, Fei Wang, Liwen Hong, Lianfu Deng, Jie Zhong, Zhengting Wang, Wenguo Cui
Published: 22 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170115

Thibault Colombani, Loek J. Eggermont, Zachary J. Rogers, Lindsay G. A. McKay, Laura E. Avena, Rebecca I. Johnson, Nadia Storm, Anthony Griffiths, Sidi A. Bencherif
Published: 22 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170111

Dan Wu, Wenhui Li, Haochen Liu, Xiangtian Xiao, Kanming Shi, Haodong Tang, Chengwei Shan, Kai Wang, Xiao Wei Sun, Aung Ko Ko Kyaw
Published: 22 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170120

Abstract:
High-Performance Perovskite Photodiodes
Jonas Lussi, Michael Mattmann, Semih Sevim, Fabian Grigis, Carmela De Marco, Christophe Chautems, Salvador Pané, Josep Puigmartí‐Luis, Quentin Boehler, Bradley J. Nelson
Published: 22 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170118

Sizhan Liu, Alexander R. DeFilippo, Mahalingam Balasubramanian, Zhenxian Liu, SuYin Grass Wang, Yu‐Sheng Chen, Stella Chariton, Vitali Prakapenka, Xiangpeng Luo, Liuyan Zhao, et al.
Published: 22 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170119

Sergej Kudruk, Sharafudheen Pottanam Chali, Anna Livia Linard Matos, Cole Bourque, Clara Dunker, Christos Gatsogiannis, Bart Jan Ravoo, Volker Gerke
Published: 22 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170112

Abstract:
Dual-Responsive Nanocontainers
Xuandi Hou, Zhihai Qiu, Quanxiang Xian, Shashwati Kala, Jianing Jing, Kin Fung Wong, Jiejun Zhu, Jinghui Guo, Ting Zhu, Minyi Yang, et al.
Published: 21 September 2021
Abstract:
Ultrasound is a promising new modality for non-invasive neuromodulation. Applied transcranially, it can be focused down to the millimeter or centimeter range. The ability to improve the treatment's spatial resolution to a targeted brain region could help to improve its effectiveness, depending upon the application. The present paper details a neurostimulation scheme using gas-filled nanostructures, gas vesicles (GVs), as actuators for improving the efficacy and precision of ultrasound stimuli. Sonicated primary neurons display dose-dependent, repeatable Ca2+ responses, closely synced to stimuli, and increased nuclear expression of the activation marker c-Fos in the presence of GVs. GV-mediated ultrasound triggered rapid and reversible Ca2+ responses in vivo and could selectively evoke neuronal activation in a deep-seated brain region. Further investigation indicate that mechanosensitive ion channels are important mediators of this effect. GVs themselves and the treatment scheme are also found not to induce significant cytotoxicity, apoptosis, or membrane poration in treated cells. Altogether, this study demonstrates a simple and effective method to achieve enhanced and better-targeted neurostimulation with non-invasive low-intensity ultrasound.
Zhijian Mai, Ye Yuan, Jung‐Shen B. Tai, Bohdan Senyuk, Bing Liu, , , ,
Published: 20 September 2021
Abstract:
Dispersing inorganic colloidal nanoparticles within nematic liquid crystals provides a versatile platform both for forming new soft matter phases and for predefining physical behavior through mesoscale molecular-colloidal self-organization. However, owing to formation of particle-induced singular defects and complex elasticity-mediated interactions, this approach has been implemented mainly just for colloidal nanorods and nanoplatelets, limiting its potential technological utility. Here, orientationally ordered nematic colloidal dispersions are reported of pentagonal gold bipyramids that exhibit narrow but controlled polarization-dependent surface plasmon resonance spectra and facile electric switching. Bipyramids tend to orient with their C5 rotation symmetry axes along the nematic director, exhibiting spatially homogeneous density within aligned samples. Topological solitons, like heliknotons, allow for spatial reorganization of these nanoparticles according to elastic free energy density within their micrometer-scale structures. With the nanoparticle orientations slaved to the nematic director and being switched by low voltages ≈1 V within a fraction of a second, these plasmonic composite materials are of interest for technological uses like color filters and plasmonic polarizers, as well as may lead to the development of unusual nematic phases, like pentatic liquid crystals.
, Simone G. Shamay‐Tsoory, Nira Saporta, Timo Esser, Ekaterina Kuskova, Birgit Stoffel‐Wagner, René Hurlemann,
Published: 20 September 2021
Abstract:
Loneliness is a painful condition associated with increased risk for premature mortality. The formation of new, positive social relationships can alleviate feelings of loneliness, but requires rapid trustworthiness decisions during initial encounters and it is still unclear how loneliness hinders interpersonal trust. Here, a multimodal approach including behavioral, psychophysiological, hormonal, and neuroimaging measurements is used to probe a trust-based mechanism underlying impaired social interactions in loneliness. Pre-stratified healthy individuals with high loneliness scores (n = 42 out of a screened sample of 3678 adults) show reduced oxytocinergic and affective responsiveness to a positive conversation, report less interpersonal trust, and prefer larger social distances compared to controls (n = 40). Moreover, lonely individuals are rated as less trustworthy compared to controls and identified by the blinded confederate better than chance. During initial trust decisions, lonely individuals exhibit attenuated limbic and striatal activation and blunted functional connectivity between the anterior insula and occipitoparietal regions, which correlates with the diminished affective responsiveness to the positive social interaction. This neural response pattern is not mediated by loneliness-associated psychological symptoms. Thus, the results indicate compromised integration of trust-related information as a shared neurobiological component in loneliness, yielding a reciprocally reinforced trust bias in social dyads.
Wei Church Poh, Xuefei Gong, Fei Yu,
Published: 17 September 2021
Abstract:
Organic materials are always viewed as promising electrochromic (EC) materials due to their synthetic versatility, color tunability, ready processability, and derivability from sustainable feedstocks. Most organic materials, however, are prone to undesirable redox side reactions in the presence of oxygen and water. As such, redox–active organic layers are often used in tandem with organic electrolytes to preserve their electrochemical stability. With the growing interest in electronics that are environmentally sustainable and biologically safe, developing aqueous-compatible organic materials is gaining growing interest. Herein, a rationally designed iron terpyridyl coordination polymer (CP) is prepared by controlled electropolymerization for realization of aqueous compatible EC and energy storage applications. Detailed analysis is established, showing that the CP grows in a 1D fashion and exhibits a predominant capacitive behavior which is reflected from its rapid charge–transfer kinetics. Taking this as an advantage, an integrated hybrid electrochromic zinc battery device is demonstrated with high color contrast, fast response time, and good endurance.
Yeonghun Yun, Devthade Vidyasagar, Minho Lee, Oh Yeong Gong, Jina Jung, Hyun‐Suk Jung, Dong Hoe Kim, Sangwook Lee
Published: 17 September 2021
Abstract:
Solvent engineering by Lewis-base solvent and anti-solvent is well known for forming uniform and stable perovskite thin films. The perovskite phase crystallizes from an intermediate Lewis-adduct upon annealing-induced crystallization. Herein, it is explored the effects of trimethyl phosphate (TMP), as a novel aprotic Lewis-base solvent with a low donor number for the perovskite film formation and photovoltaic characteristics of perovskite solar cells (PSCs). As compared to dimethylsulfoxide (DMSO) or dimethylformamide (DMF), the usage of TMP directly crystallizes the perovskite phase, i.e., reduces the intermediate phase to a negligible degree, right after the spin-coating, owing to the high miscibility of TMP with the anti-solvent and weak bonding in the Lewis adduct. Interestingly, the PSCs based on methylammonium lead iodide (MAPbI3) derived from TMP/DMF-mixed solvent exhibit a higher average power conversion efficiency of 19.68% (the best: 20.02%) with a smaller hysteresis in the current-voltage curve, compared to the PSCs that are fabricated using DMSO/DMF-mixed (19.14%) or DMF-only (18.55%) solvents. The superior photovoltaic properties are attributed to the lower defect density of the TMP/DMF-derived perovskite film. The results indicate that a high-performance PSC can be achieved by combining a weak Lewis base with a well-established solvent engineering process.
Eduardo B. Guedes, Stefan Muff, Walber H. Brito, , Hang Li, , ,
Published: 17 September 2021
Abstract:
The 2-dimensional electron gas (2DEG) found at the surface of SrTiO3 and related interfaces has attracted significant attention as a promising basis for oxide electronics. In order to utilize its full potential, the response of this 2DEG to structural changes and surface modification must be understood in detail. Here, a study of the detailed electronic structure evolution of the 2DEG as a function of sample temperature and surface step density is presented. By comparing the experimental results with ab initio calculations, it is shown that local structure relaxations cause a metal-insulator transition of the system around 135 K. This study presents a new and simple way of tuning the 2DEG via surface vicinality and identifies how the operation of prospective devices will respond to changes in temperature.
, Hsun‐Chia Hsu, Vladislav V. Verkhusha, Lihong V. Wang,
Published: 17 September 2021
Abstract:
Photoacoustic tomography (PAT) with genetically encoded near-infrared probes enables visualization of specific cell populations in vivo at high resolution deeply in biological tissues. However, because of a lack of proper probes, PAT of cellular dynamics remains unexplored. Here, the authors report a near-infrared Forster resonance energy transfer (FRET) biosensor based on a miRFP670-iRFP720 pair of the near-infrared fluorescent proteins, which enables dynamic functional imaging of active biological processes in deep tissues. By photoacoustically detecting the changes in the optical absorption of the miRFP670 FRET-donor, they monitored cell apoptosis in deep tissue at high spatiotemporal resolution using PAT. Specifically, they detected apoptosis in single cells at a resolution of ≈3 µm in a mouse ear tumor, and in deep brain tumors (>3 mm beneath the scalp) of living mice at a spatial resolution of ≈150 µm with a 20 Hz frame rate. These results open the way for high-resolution photoacoustic imaging of dynamic biological processes in deep tissues using NIR biosensors and PAT.
, Sümeyye Aykut, Sophia Ganzeboom, Yuki A. Meier, Robert Hardeman, Joost de Graaf, Arnold J. T. M. Mathijssen, Erik Poloni, Julia A. Carpenter, Caner Ünlü, et al.
Published: 16 September 2021
Abstract:
One of the major challenges in modern robotics is controlling micromanipulation by active and adaptive materials. In the respiratory system, such actuation enables pathogen clearance by means of motile cilia. While various types of artificial cilia have been engineered recently, they often involve complex manufacturing protocols and focus on transporting liquids only. Here, soft magnetic carpets are created via an easy self-assembly route based on the Rosensweig instability. These carpets can transport not only liquids but also solid objects that are larger and heavier than the artificial cilia, using a crowd-surfing effect.This amphibious transportation is locally and reconfigurably tunable by simple micromagnets or advanced programmable magnetic fields with a high degree of spatial resolution. Two surprising cargo reversal effects are identified and modeled due to collective ciliary motion and nontrivial elastohydrodynamics. While the active carpets are generally applicable to integrated control systems for transport, mixing, and sorting, these effects can also be exploited for microfluidic viscosimetry and elastometry.
Bo Gao, Jing Hu, Sheng Tang, Xinyu Xiao, Hunglin Chen, Zhuang Zuo, Qi Qi, Zongyang Peng, Jianchun Wen,
Published: 16 September 2021
Abstract:
Organic–inorganic halide perovskites have been widely used in photovoltaic technologies. Despite tremendous progress in their efficiency and stability, perovskite solar cells (PSCs) are still facing the challenges of upscaling and stability for practical applications. As a mature film preparation technology, magnetron sputtering has been widely used to prepare metals, metallic oxides, and some semiconductor films, which has great application potential in the fabrication of PSCs. Here, a unique technology where high-quality perovskite films are prepared via magnetron sputtering for controllable composition, solvent-free, large-area, and massive production, is presented. This strategy transforms the perovskite materials from powder to thin films by magnetron sputtering and post-treatment (vapor-assisted treatment with methanaminium iodide gas and methylamine gas treatment), which is greatly favorable to manufacture tandem solar cells. The power conversion efficiency (PCE) of PSCs with perovskite films fabricated by magnetron sputtering is 6.14%. After optimization, high-performance perovskite films with excellent electronic properties are obtained and stable PSCs with excellent reproducibility are realized, showing a PCE of up to 15.22%. The entirely novel synthetic approach opens up a new and promising way to achieve high-throughput magnetron sputtering for large-area production in commercial applications of planar heterojunction and tandem PSCs.
Fulei Zhang, Yi Hou, Minhui Zhu, Bo Deng, Mengxin Zhao, Xiandi Zhu, Yun Sun, Di Chen, Cheng Jiang, Liming Wang, et al.
Published: 15 September 2021
Abstract:
Necrosis induces strong inflammation with undesirable implications in clinics compared with apoptosis. Fortunately, the switch between necrosis and apoptosis could be realized by tailoring the appropriate structural properties of gold nano rods (GNRs) that could precisely modulate cell death pathways. Herein, the intracellular interaction between GNRs and organelles is monitored and it is found that lysosomes dominates necrosis/apoptosis evoking. Then the surface molecule density of GNRs, which is first defined as ρsurf. molecule (Nsurf. molecules/(a × π × Diameter × Length)), mediates lysosome activities as the membrane permeabilization (LMP), the Cathepsin B and D release, the cross-talk between lysosome and different organelles, which selectively evokes apoptosis or necrosis and the production of TNF-α from macrophages. GNRs with small ρsurf. molecule mainly induce apoptosis, while with large ρsurf. molecule they greatly contribute to necrosis. Interestingly, necrosis can be suppressed by GNRs with higher ρsurf. molecule due to the overexpression of key protease caspase 8, which cleaves the RIP1-RIP3 complex and activates caspase 3 followed by necrosis to apoptosis transition. This investigation indicates that the ρsurf. molecule greatly affects the utility of nanomaterials and different structural properties of nanomaterials have different implications in clinics.
Jianjun Zhang, Linxi Wang, Chenhui Jiang, Bei Cheng, Tao Chen,
Published: 13 September 2021
Abstract:
Organic-inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet-chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room-temperature synthesized CsPbBr3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO2/perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built-in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH3NH3PbI3-based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability.
Jun Lin, Xiaoxiao Jiang, Meng Dong, Xiaomeng Liu, Qiwei Shen, Yuanyuan Huang, Hanlin Zhang, Rongcai Ye, Huiqiao Zhou, Chunlong Yan, et al.
Published: 13 September 2021
Abstract:
Intermittent fasting (IF), as a dietary intervention for weight loss, takes effects primarily through increasing energy expenditure. However, whether inter-organ systems play a key role in IF remains unclear. Here, a novel hepatokine, pregnancy zone protein (PZP) is identified, which has significant induction during the refeeding stage of IF. Further, loss of function studies and protein therapeutic experiment in mice revealed that PZP promotes diet-induced thermogenesis through activating brown adipose tissue (BAT). Mechanistically, circulating PZP can bind to cell surface glucose-regulated protein of 78 kDa (GRP78) to promote uncoupling protein 1 (UCP1) expression via a p38 MAPK-ATF2 signaling pathway in BAT. These studies illuminate a systemic regulation in which the IF promotes BAT thermogenesis through the endocrinal system and provide a novel potential target for treating obesity and related disorders.
Josh Haipeng Lei, Mi‐Hye Lee, Kai Miao, Zebin Huang, Zhicheng Yao, Aiping Zhang, Jun Xu, Ming Zhao, ZeNan Huang, Xin Zhang, et al.
Published: 13 September 2021
Abstract:
Fibroblast growth factor receptor 2 (FGFR2) is a membrane-spanning tyrosine kinase that mediates FGF signaling. Various FGFR2 alterations are detected in breast cancer, yet it remains unclear if activation of FGFR2 signaling initiates tumor formation. In an attempt to answer this question, a mouse model berrying an activation mutation of FGFR2 (FGFR2-S252W) in the mammary gland is generated. It is found that FGF/FGFR2 signaling drives the development of triple-negative breast cancer accompanied by epithelial-mesenchymal transition that is regulated by FGFR2-STAT3 signaling. It is demonstrated that FGFR2 suppresses BRCA1 via the ERK-YY1 axis and promotes tumor progression. BRCA1 knockout in the mammary gland of the FGFR2-S252W mice significantly accelerated tumorigenesis. It is also shown that FGFR2 positively regulates PD-L1 and that a combination of FGFR2 inhibition and immune checkpoint blockade kills cancer cells. These data suggest that the mouse models mimic human breast cancers and can be used to identify actionable therapeutic targets.
Caitlin L. Maikawa, Peyton C. Chen, Eric T. Vuong, Leslee T. Nguyen, Joseph L. Mann, Andrea I. D'Aquino, Rayhan A. Lal, David M. Maahs, Bruce A. Buckingham,
Published: 9 September 2021
Abstract:
Dual-hormone replacement therapy with insulin and amylin in patients with type 1 diabetes has the potential to improve glucose management. Unfortunately, currently available formulations require burdensome separate injections at mealtimes and have disparate pharmacokinetics that do not mimic endogenous co-secretion. Here, amphiphilic acrylamide copolymers are used to create a stable co-formulation of monomeric insulin and amylin analogues (lispro and pramlintide) with synchronous pharmacokinetics and ultra-rapid action. The co-formulation is stable for over 16 h under stressed aging conditions, whereas commercial insulin lispro (Humalog) aggregates in 8 h. The faster pharmacokinetics of monomeric insulin in this co-formulation result in increased insulin–pramlintide overlap of 75 ± 6% compared to only 47 ± 7% for separate injections. The co-formulation results in similar delay in gastric emptying compared to pramlintide delivered separately. In a glucose challenge, in rats, the co-formulation reduces deviation from baseline glucose compared to insulin only, or separate insulin and pramlintide administrations. Further, comparison of interspecies pharmacokinetics of monomeric pramlintide suggests that pharmacokinetics observed for the co-formulation will be well preserved in future translation to humans. Together these results suggest that the co-formulation has the potential to improve mealtime glucose management and reduce patient burden in the treatment of diabetes.
Jialing Wen, Wenhui Tang, Zhuo Kang, Qingliang Liao, Mengyu Hong, Junli Du, Xiankun Zhang, Huihui Yu, Haonan Si, , et al.
Published: 9 September 2021
Abstract:
Direct charge trapping memory, a new concept memory without any dielectric, has begun to attract attention. However, such memory is still at the incipient stage, of which the charge-trapping capability depends on localized electronic states that originated from the limited surface functional groups. To further advance such memory, a material with rich hybrid states is highly desired. Here, a van der Waals heterostructure design is proposed utilizing the 2D graphdiyne (GDY) which possesses abundant hybrid states with different chemical groups. In order to form the desirable van der Waals coupling, the plasma etching method is used to rapidly achieve the ultrathin 2D GDY with smooth surface for the first time. With the plasma-treated 2D GDY as charge-trapping layer, a direct charge-trapping memory based on GDY/MoS2 is constructed. This bilayer memory is featured with large memory window (90 V) and high degree of modulation (on/off ratio around 8 × 107). Two operating mode can be achieved and data storage capability of 9 and 10 current levels can be obtained, respectively, in electronic and opto-electronic mode. This GDY/MoS2 memory introduces a novel application of GDY as rich states charge-trapping center and offers a new strategy of realizing high performance dielectric-free electronics, such as optical memories and artificial synaptic.
Ruomei Shao, Chunnan Wang, Jingru Zhao, Hang Yang,
Published: 9 September 2021
Abstract:
In the field of biomimetic electronics, flexible sensors with both high resolution and large size are attracting a lot of attention. However, attempts to increase the number of sensor pixels have been thwarted by the need for complex inner circuits and the resulting interferences with the output. Technological challenges, such as real-time spatiotemporal mapping and long-time reliability, must be resolved for large-scale sensor matrices. This paper reports a simple and robust sensor with an arch-bridge architecture (ABA) to address these challenges. The device, which consists of an anti-icing all-transparent material system, is fabricated by immobilizing ABA ionic arrays on predefined grooves on the substrate. It systematically integrates ABA structure-designing, resistance-position-sensing, and parallel-addressing logic, allowing for an improvement of three orders of magnitude in the scanning speed (million-scale pixels) without logical “diagnose confusion.” In addition, it can withstand 100 000 stretching cycles without functional failure. It is also resistant to interferences from stretching. humidity, wet surfaces, and power lines. The proposed strategy is envisaged to serve as a general solution for high-density, large-area tactile sensors in various applications.
Hyungsoo Lee, Jin Wook Yang, Jeiwan Tan, Jaemin Park, Sang Gi Shim, Young Sun Park, Juwon Yun, Kyungmin Kim, ,
Published: 8 September 2021
Abstract:
To achieve a high solar-to-hydrogen (STH) conversion efficiency, delicate strategies toward high photocurrent together with sufficient onset potential should be developed. Herein, an SnS semiconductor is reported as a high-performance photocathode. Use of proper sulfur precursor having weak dipole moment allows to obtain high-quality dense SnS nanoplates with enlarged favorable crystallographic facet, while suppressing inevitable anisotropic growth. Furthermore, the introducing Ga2O3 layer between SnS and TiO2 in SnS photocathodes efficiently improves the charge transport kinetics without charge trapping. The SnS photocathode reveals the highest photocurrent density of 28 mA cm−2 at 0 V versus the reversible hydrogen electrode. Overall solar water splitting is demonstrated for the first time by combining the optimized SnS photocathode with a Mo:BiVO4 photoanode, achieving a STH efficiency of 1.7% and long-term stability of 24 h. High performance and low-cost SnS photocathode represent a promising new material in the field of photoelectrochemical solar water splitting.
Wuming Wang, Gang Lu, Hong‐Bin Liu, Zhiqiang Xiong, Ho‐Duen Leung, Ruican Cao, Alan Lap‐Yin Pang, Xianwei Su, Patrick Wai Nok Law, Zhiju Zhao, et al.
Published: 8 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170107

Abstract:
Regulating Cardiomyocyte Differentiation
Lizhen Xu, Heng Zhang, Yunfei Wang, Xiancui Lu, Zhenye Zhao, Cheng Ma, Shilong Yang, Vladimir Yarov‐Yarovoy, Yuhua Tian, Jie Zheng, et al.
Published: 8 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170104

Abstract:
Positive Allosteric Modulators
, , Eivind G. Lund, Omri Snir, Shiva Dahal‐Koirala, Louise Fremgaard Risnes, Jørgen Jahnsen, Knut E. A. Lundin,
Published: 8 September 2021
Abstract:
Gluten-specific CD4+ T cells being drivers of celiac disease (CeD) are obvious targets for immunotherapy. Little is known about how cell markers harnessed for T-cell-directed therapy can change with time and upon activation in CeD and other autoimmune conditions. In-depth characterization of gluten-specific CD4+ T cells and CeD-associated (CD38+ and CD103+) CD8+ and γδ+ T cells in blood of treated CeD patients undergoing a 3 day gluten challenge is reported. The phenotypic profile of gluten-specific cells changes profoundly with gluten exposure and the cells adopt the profile of gluten-specific cells in untreated disease (CD147+, CD70+, programmed cell death protein 1 (PD-1)+, inducible T-cell costimulator (ICOS)+, CD28+, CD95+, CD38+, and CD161+), yet with some markers being unique for day 6 cells (C-X-C chemokine receptor type 6 (CXCR6), CD132, and CD147) and with integrin α4β7, C-C motif chemokine receptor 9 (CCR9), and CXCR3 being expressed stably at baseline and day 6. Among gluten-specific CD4+ T cells, 52% are CXCR5+ at baseline, perhaps indicative of germinal-center reactions, while on day 6 all are CXCR5−. Strikingly, the phenotypic profile of gluten-specific CD4+ T cells on day 6 largely overlaps with that of CeD-associated (CD38+ and CD103+) CD8+ and γδ+ T cells. The antigen-induced shift in phenotype of CD4+ T cells being shared with other disease-associated T cells is relevant for development of T-cell-directed therapies.
Xianyang Wu, Bohang Song, Po‐Hsiu Chien, S. Michelle Everett, Kejie Zhao, ,
Published: 8 September 2021
Abstract:
Fast charging (<15 min) of lithium-ion batteries (LIBs) for electrical vehicles (EVs) is widely seen as the key factor that will greatly stimulate the EV markets, and its realization is mainly hindered by the sluggish diffusion of Li+. To have a mechanistic understanding of Li+ diffusion within LIBs, in this study, structural evolutions of electrodes for a Ni-rich LiNi0.6Mn0.2Co0.2O2 (NMC622) || graphite cylindrical cell with high areal loading (2.78 mAh cm−2) are developed for operando neutron powder diffraction study at different charging rates. Via sequential Rietveld refinements, changes in structures of NMC622 and LixC6 are obtained during moderate and fast charging (from 0.27 C to 4.4 C). NMC622 exhibits the same structural evolution regardless of C-rates. For phase transitions of LixC6, the stage I (LiC6) phase emerges earlier during the stepwise intercalation at a lower state of charge when charging rate is increased. It is also found that the stage II (LiC12) → stage I (LiC6) transition is the rate-limiting step during fast charging. The LiC12 → LiC6 transition mechanism is further analyzed using the Johnson–Mehl–Avrami–Kolmogorov model. It is concluded as a diffusion-controlled, 1D phase transition with decreasing nucleation kinetics under increasing chargingrates.
Luyang Wang, Yu Ding, Xiaozheng Wang, Runze Lai, Mengqi Zeng, Lei Fu
Published: 8 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170103

Myeongsang Lee, Nengyi Ni, Huayuan Tang, Yuhuan Li, Wei Wei, Aleksandr Kakinen, Xulin Wan, , , , et al.
Published: 8 September 2021
Abstract:
Nanomaterial-induced endothelial leakiness (NanoEL) is an interfacial phenomenon denoting the paracellular transport of nanoparticles that is pertinent to nanotoxicology, nanomedicine and biomedical engineering. While the NanoEL phenomenon is complementary to the enhanced permeability and retention effect in terms of their common applicability to delineating the permeability and behavior of nanoparticles in tumoral environments, these two effects significantly differ in scope, origin, and manifestation. In the current study, the descriptors are fully examined of the NanoEL phenomenon elicited by generic citrate-coated gold nanoparticles (AuNPs) of changing size and concentration, from microscopic gap formation and actin reorganization down to molecular signaling pathways and nanoscale interactions of AuNPs with VE-cadherin and its intra/extracellular cofactors. Employing synergistic in silico methodologies, for the first time the molecular and statistical mechanics of cadherin pair disruption, especially in response to AuNPs of the smallest size and highest concentration are revealed. This study marks a major advancement toward establishing a comprehensive NanoEL framework for complementing the understanding of the transcytotic pathway and for guiding the design and application of future nanomedicines harnessing the myriad functions of the mammalian vasculature.
Khadiza Ali, Laura Fernández, Mohammad A. Kherelden, Anna A. Makarova, Igor Píš, Federica Bondino, James Lawrence, Dimas G. de Oteyza, Dmitry Yu. Usachov, Denis V. Vyalikh, et al.
Published: 8 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170108

Hyeokjun Seo, Sunghyun Yoon, Banseok Oh, Yongchul G. Chung, Dong‐Yeun Koh
Published: 8 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170110

Abstract:
Organic Solvent Forward Osmosis
Lishuai Jin, Antonio Elia Forte,
Published: 8 September 2021
Abstract:
Inflatable robots are becoming increasingly popular, especially in applications where safe interactions are a priority. However, designing multifunctional robots that can operate with a single pressure input is challenging. A potential solution is to couple inflatables with passive valves that can harness the flow characteristics to create functionality. In this study, simple, easy to fabricate, lightweight, and inexpensive mechanical valves are presented that harness viscous flow and snapping arch principles. The mechanical valves can be fully integrated on-board, enabling the control of the incoming airflow to realize multifunctional robots that operate with a single pressure input, with no need for electronic components, cables, or wires. By means of three robotic demos and guided by a numerical model, the capabilities of the valves are demonstrated and optimal input profiles are identified to achieve prescribed functionalities. The study enriches the array of available mechanical valves for inflatable robots and enables new strategies to realize multifunctional robots with on-board flow control.
Guocheng Fang, , Laura Rodriguez de la Fuente, Andrew M. K. Law, Gungun Lin, Dayong Jin,
Published: 8 September 2021
Abstract:
Mammary tumor organoids have become a promising in vitro model for drug screening and personalized medicine. However, the dependency on the basement membrane extract (BME) as the growth matrices limits their comprehensive application. In this work, mouse mammary tumor organoids are established by encapsulating tumor pieces in non-adhesive alginate. High-throughput generation of organoids in alginate microbeads is achieved utilizing microfluidic droplet technology. Tumor pieces within the alginate microbeads developed both luminal- and solid-like structures and displayed a high similarity to the original fresh tumor in cellular phenotypes and lineages. The mechanical forces of the luminal organoids in the alginate capsules are analyzed with the theory of the thick-wall pressure vessel (TWPV) model. The luminal pressure of the organoids increase with the lumen growth and can reach 2 kPa after two weeks’ culture. Finally, the mammary tumor organoids are treated with doxorubicin and latrunculin A to evaluate their application as a drug screening platform. It is found that the drug response is related to the luminal size and pressures of organoids. This high-throughput culture for mammary tumor organoids may present a promising tool for preclinical drug target validation and personalized medicine.
Servann Hérou, Josh J Bailey, Matt Kok, Philipp Schlee, Rhodri Jervis, Dan J. L. Brett, Paul R. Shearing, Maria Crespo Ribadeneyra, Magdalena Titirici
Published: 8 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170109

Abstract:
Carbon Nanofiber Supercapacitors
Yang Gao, , Taifeng Liu, Yuxin Liu, Chao Zhang, Chengyu Xing, ,
Published: 8 September 2021
Abstract:
There is no doubt that hydrogen energy can play significant role in promoting the development and progress of modern society. The utilization of hydrogen energy has developed rapidly, but it is far from the requirement of human. Therefore, it is very urgent to develop methodologies and technologies for efficient hydrogen production, especially high activity and durable electrocatalysts. Here a bimetallic oxide cluster on heterostructure of vanadium ruthenium oxides/graphdiyne (VRuOx/GDY) is reported. The unique acetylene-rich structure of graphdiyne achieves outstanding characteristics of electrocatalyst: i) controlled preparation of catalysts for achieving multiple-metal clusters; ii) regulation of catalyst composition and morphology for synthesizing high-performance catalysts; iii) highly active and durable hydrogen evolution reaction (HER) properties. The optimal porous electrocatalyst (VRu0.027Ox/GDY) can deliver 10 mA cm−2 at low overpotentials of 13 and 12 mV together with robust long-term stability in alkaline and neutral media, respectively, which are much smaller than Pt/C. The results reveal that the synergism of different components can efficiently facilitate the electron/mass transport properties, reduce the energy barrier, and increase the active site number for high catalytic performances.
En Ren, Chao Liu, Peng Lv, ,
Published: 8 September 2021
Abstract:
Benefiting from the blooming interaction of nanotechnology and biotechnology, biosynthetic cellular membrane vesicles (Bio-MVs) have shown superior characteristics for therapeutic transportation because of their hydrophilic cavity and hydrophobic bilayer structure, as well as their inherent biocompatibility and negligible immunogenicity. These excellent cell-like features with specific functional protein expression on the surface can invoke their remarkable ability for Bio-MVs based recombinant protein therapy to facilitate the advanced synergy in poly-therapy. To date, various tactics have been developed for Bio-MVs surface modification with functional proteins through hydrophobic insertion or multivalent electrostatic interactions. While the Bio-MVs grow through genetically engineering strategies can maintain binding specificity, sort orders, and lead to strict information about artificial proteins in a facile and sustainable way. In this progress report, the most current technology of Bio-MVs is discussed, with an emphasis on their multi-functionalities as “tailorable shells” for delivering bio-functional moieties and therapeutic entities. The most notable success and challenges via genetically engineered tactics to achieve the new generation of Bio-MVs are highlighted. Besides, future perspectives of Bio-MVs in novel bio-nanotherapy are provided.
Bozhidar‐Adrian Stefanov, Ana P. Teixeira, Maysam Mansouri, Adrian Bertschi, Krzysztof Krawczyk, Ghislaine Charpin‐El Hamri, Shuai Xue,
Published: 8 September 2021
Abstract:
Body temperature is maintained at around 37 °C in humans, but may rise to 40 °C or more during high-grade fever, which occurs in most adults who are seriously ill. However, endogenous temperature sensors, such as ion channels and heat-shock promoters, are fully activated only at noxious temperatures above this range, making them unsuitable for medical applications. Here, a genetically encoded protein thermometer (human enhanced gene activation thermometer; HEAT) is designed that can trigger transgene expression in the range of 37–40 °C by linking a mutant coiled-coil temperature-responsive protein sensor to a synthetic transcription factor. To validate the construct, a HEAT-transgenic monoclonal human cell line, FeverSense, is generated and it is confirmed that it works as a fever sensor that can temperature- and exposure-time-dependently trigger reporter gene expression in vitro and in vivo. For translational proof of concept, microencapsulated designer cells stably expressing a HEAT-controlled insulin production cassette in a mouse model of type-1 diabetes are subcutaneously implanted and topical heating patches are used to apply heat corresponding to a warm sensation in humans. Insulin release is induced, restoring normoglycemia. Thus, HEAT appears to be suitable for practical electrothermal control of cell-based therapy, and may also have potential for next-generation treatment of fever-associated medical conditions.
Correction
Kyung Song, Taewon Min, Jinsol Seo, SangWoo Ryu, Hyungwoo Lee, Zhipeng Wang, Si‐Young Choi, Jaekwang Lee, Chang‐Beom Eom,
Published: 8 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202103095

Xiuwen Xu, Wei Qian, Jian Wang, Jiecheng Yang, Jianwei Chen, Shuang Xiao, Yongshuai Ge,
Published: 8 September 2021
Abstract:
Perovskite materials in different dimensions show great potential in direct X-ray detection, but each with limitations stemming from its own intrinsic properties. Particularly, the sensitivity of two-dimensional (2D) perovskites is limited by poor carrier transport while ion migration in three-dimensional (3D) perovskites causes the baseline drifting problem. To circumvent these limitations, herein a double-layer perovskite film is developed with properly aligned energy level, where 2D (PEA)2MA3Pb4I13 (PEA=2-phenylethylammonium, MA=methylammonium) is cascaded with vertically crystallized 3D MAPbI3. In this new design paradigm, the 3D layer ensures fast carrier transport while the 2D layer mitigates ion migration, thus offering a high sensitivity and a greatly stabilized baseline. Besides, the 2D layer increases the film resistivity and enlarges the energy barrier for hole injection without compromising carrier extraction. Consequently, the double-layer perovskite detector delivers a high sensitivity (1.95 × 104 μC Gyair−1 cm−2) and a low detection limit (480 nGyair s−1). Also demonstrated is the X-ray imaging capacity using a circuit board as the object. This work opens up a new avenue for enhancing X-ray detection performance via cascade assembly of various perovskites with complementary properties.
Hojoong Kim, Young‐Tae Kwon, Carol Zhu, Fang Wu, Shinjae Kwon, Woon‐Hong Yeo, Hyojung J. Choo
Published: 8 September 2021
Advanced Science, Volume 8; https://doi.org/10.1002/advs.202170106

Mingyue Cui, Mengjia Zheng, Christian Wiraja, Sharon Wan Ting Chew, Arti Mishra, Venkatesh Mayandi, ,
Published: 8 September 2021
Abstract:
The development of potent antibiotic alternatives with rapid bactericidal properties is of great importance in addressing the current antibiotic crisis. One representative example is the topical delivery of predatory bacteria to treat ocular bacterial infections. However, there is a lack of suitable methods for the delivery of predatory bacteria into ocular tissue. This work introduces cryomicroneedles (cryoMN) for the ocular delivery of predatory Bdellovibrio bacteriovorus (B. bacteriovorus) bacteria. The cryoMN patches are prepared by freezing B. bacteriovorus containing a cryoprotectant medium in a microneedle template. The viability of B. bacteriovorus in cryoMNs remains above 80% as found in long-term storage studies, and they successfully impede the growth of gram-negative bacteria in vitro or in a rodent eye infection model. The infection is significantly relieved by nearly six times through 2.5 days of treatment without substantial effects on the cornea thickness and morphology. This approach represents the safe and efficient delivery of new class of antimicrobial armamentarium to otherwise impermeable ocular surface and opens up new avenues for the treatment of ocular surface disorders.
Jing Wu, Ziqing Chen, Stina L. Wickström, Juan Gao, Xingkang He, Xu Jing, Jieyu Wu, Qiqiao Du, Muyi Yang, Yi Chen, et al.
Published: 5 September 2021
Abstract:
Recognition of specific antigens expressed in cancer cells is the initial process of cytolytic T cell-mediated cancer killing. However, this process can be affected by other non-cancerous cellular components in the tumor microenvironment. Here, it is shown that interleukin-33 (IL-33)-activated macrophages protect melanoma cells from tumor-infiltrating lymphocyte-mediated killing. Mechanistically, IL-33 markedly upregulates metalloprotease 9 (MMP-9) expression in macrophages, which acts as a sheddase to trim NKG2D, an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, subsets of CD4+ T cells, iNKT cells, and γδ T cells. Further, MMP-9 also cleaves the MHC class I molecule, cell surface antigen-presenting complex molecules, expressed in melanoma cells. Consequently, IL-33-induced macrophage MMP-9 robustly mitigates the tumor killing-effect by T cells. Genetic and pharmacological loss-of-function of MMP-9 sheddase restore T cell-mediated cancer killing. Together, these data provide compelling in vitro and in vivo evidence showing novel mechanisms underlying the IL-33-macrophage-MMP-9 axis-mediated immune tolerance against cancer cells. Targeting each of these signaling components, including IL-33 and MMP-9 provides a new therapeutic paradigm for improving anticancer efficacy by immune therapy.
Giulia Bruno, Giovanni Melle, Andrea Barbaglia, Giuseppina Iachetta, Rustamzhon Melikov, Michela Perrone, ,
Published: 5 September 2021
Abstract:
Optical stimulation technologies are gaining great consideration in cardiology, neuroscience studies, and drug discovery pathways by providing control over cell activity with high spatio-temporal resolution. However, this high precision requires manipulation of biological processes at genetic level concealing its development from broad scale application. Therefore, translating these technologies into tools for medical or pharmacological applications remains a challenge. Here, an all-optical nongenetic method for the modulation of electrogenic cells is introduced. It is demonstrated that plasmonic metamaterials can be used to elicit action potentials by converting near infrared laser pulses into stimulatory currents. The suggested approach allows for the stimulation of cardiomyocytes and neurons directly on commercial complementary metal-oxide semiconductor microelectrode arrays coupled with ultrafast pulsed laser, providing both stimulation and network-level recordings on the same device.
, , Yeseul Kim, Joohoon Kim,
Published: 5 September 2021
Abstract:
Tunable optical devices powered by metasurfaces provide a new path for functional planar optics. In particular, lenses with tunable focal lengths can play a key role in various fields with applications in imaging, displays, and augmented and virtual reality devices. Here, the authors demonstrate an electrically controllable bifocal metalens at visible wavelengths by incorporating a metasurface designed to focus light at two different focal lengths, with liquid crystals to actively manipulate the focal length of the metalens through the application of an external bias. By utilizing hydrogenated amorphous silicon that is optimized to provide an extremely low extinction coefficient in the visible regime, the metalens is highly efficient with measured focusing efficiencies of around 44%. They numerically design and experimentally realize and characterize tunable focusing and demonstrate electrically tunable active imaging at visible wavelengths using the bifocal metalens combined with liquid crystals. Diffraction limited focusing and imaging is verified through the analysis of the measured optical intensities at the focal points and the modulation transfer function. The bifocal metalens is used to demonstrate electrically modulated focus switching between the two designed focal planes, to display images of positive and negative target objects.
Page of 72
Articles per Page
by
Show export options
  Select all
Back to Top Top