Refine Search

New Search

Results in Journal G3 Genes|Genomes|Genetics: 3,150

(searched for: journal_id:(439423))
Page of 63
Articles per Page
Show export options
  Select all
Ruiqi Wang, Mengxuan Reng, Shuanghui Tian, Cong Liu, He Cheng, Yingying Liu, Huaxin Zhang, Muhammad Saqib, Hairong Wei,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab195

We applied miRNA expression profiling method to Populus trichocarpa stems of the three developmental stages, primary stem (PS), transitional stem (TS), and secondary stem (SS), to investigate miRNA species and their regulation on lignocellulosic synthesis and related processes. We obtained 892, 872, and 882 known miRNAs and 1,727, 1,723, and 1,597 novel miRNAs, from PS, TS, and SS, respectively. Comparisons of these miRNA species among different developmental stages led to the identification of 114, 306, and 152 differentially expressed miRNAs (DE-miRNAs), which had 921, 2,639, and 2,042 candidate target genes (CTGs) in the three respective stages of the same order. Corelation analysis revealed 47, 439, and 71 DE-miRNA-CTG pairs of high negative correlation in PS, TS and SS, respectively. Through biological process analysis, we finally identified 34, 6, and 76 miRNA-CTG pairs from PS, TS, and SS, respectively, and the miRNA target genes in these pairs regulate or participate lignocellulosic biosynthesis related biological processes: cell division and differentiation, cell wall modification, secondary cell wall biosynthesis, lignification, and programmed cell death processes. This is the first report on an integrated analysis of genome-wide mRNA and miRNA profilings during multiple phases of poplar stem development. Our analysis results imply that individual miRNAs modulate secondary growth and lignocellulosic biosynthesis through regulating transcription factors and lignocellulosic biosynthetic pathway genes, resulting in more dynamic promotion, suppression, or regulatory circuits. This study advanced our understanding of many individual miRNAs and their essential, diversified roles in dynamic regulation of secondary growth in woody tree species.
Jyoti Saini Sharma, Megan Overlander, Justin D Faris, Daryl L Klindworth, Matthew N Rouse, Houyang Kang, Yunming Long, Yue Jin, Evans S Lagudah,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab193

Resistance breeding is an effective approach against wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt). The synthetic hexaploid wheat line Largo (pedigree: durum wheat ‘Langdon’ × Aegilops tauschii PI 268210) was found to have resistance to a broad spectrum of Pgt races including the Ug99 race group. To identify the stem rust resistance (Sr) genes, we genotyped a population of 188 recombinant inbred lines developed from a cross between the susceptible wheat line ND495 and Largo using the wheat Infinium 90 K SNP iSelect array and evaluated the population for seedling resistance to the Pgt races TTKSK, TRTTF, and TTTTF in the greenhouse conditions. Based on genetic linkage analysis using the marker and rust data, we identified six quantitative trait loci (QTL) with effectiveness against different races. Three QTL on chromosome arms 6AL, 2BL, and 2BS corresponded to Sr genes Sr13c, Sr9e, and a likely new gene from Langdon, respectively. Two other QTL from PI 268210 on 2DS and 1DS were associated with a potentially new allele of Sr46 and a likely new Sr gene, respectively. Additionally, Sr7a was identified as the underlying gene for the 4AL QTL from ND495. Knowledge of the Sr genes in Largo will help to design breeding experiments aimed to develop new stem rust-resistant wheat varieties. Largo and its derived lines are particularly useful for introducing two Ug99-effective genes Sr13c and Sr46 into modern bread wheat varieties. The 90 K SNP-based high-density map will be useful for identifying the other important genes in Largo.
, Michael W Itgen, Amanda K Broz, Olivia G Carter, Daniel B Sloan
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab189

The angiosperm genus Silene is a model system for several traits of ecological and evolutionary significance in plants, including breeding system and sex chromosome evolution, host-pathogen interactions, invasive species biology, heavy metal tolerance, and cytonuclear interactions. Despite its importance, genomic resources for this large genus of approximately 850 species are scarce, with only one published whole-genome sequence (from the dioecious species S. latifolia). Here, we provide genomic and transcriptomic resources for a hermaphroditic representative of this genus (S. noctiflora), including a PacBio Iso-Seq transcriptome, which uses long-read, single-molecule sequencing technology to analyze full-length mRNA transcripts. Using these data, we have assembled and annotated high-quality full-length cDNA sequences for approximately 14,126 S. noctiflora genes and 25,317 isoforms. We demonstrated the utility of these data to distinguish between recent and highly similar gene duplicates by identifying novel paralogous genes in an essential protease complex. Further, we provide a draft assembly for the approximately 2.7-Gb genome of this species, which is near the upper range of genome-size values reported for diploids in this genus and three-fold larger than the 0.9-Gb genome of S. conica, another species in the same subgenus. Karyotyping confirmed that S. noctiflora is a diploid, indicating that its large genome size is not due to polyploidization. These resources should facilitate further study and development of this genus as a model in plant ecology and evolution.
, Takahisa Sasaki, Miki Nagahara, Takashi Iwamoto
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab194

As the efficiency of the clustered regularly interspaced short palindromic repeats/Cas system is extremely high, creation and maintenance of homozygous lethal mutants are often difficult. Here, we present an efficient in vivo electroporation method called improved genome editing via oviductal nucleic acid delivery (i-GONAD), wherein one of two alleles in the lethal gene was selectively edited in the presence of a non-targeted B6.C3H-In(6)1J inversion identified from the C3H/HeJJcl strain. This method did not require isolation, culture, transfer, or other in vitro handling of mouse embryos. The edited lethal genes were stably maintained in heterozygotes, as recombination is strongly suppressed within this inversion interval. Using this strategy, we successfully generated the first Tprkb null knockout strain with an embryonic lethal mutation and showed that B6.C3H-In(6)1J can efficiently suppress recombination. As B6.C3H-In(6)1J was tagged with a gene encoding the visible coat color marker, Mitf, the Tprkb mutation could be visually recognized. We listed the stock balancer strains currently available as public bioresources to create these lethal gene knockouts. This method will allow for more efficient experiments for further analysis of lethal mutants.
Prajakta P Kokate, Stephen M Techtmann,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab191

Codon usage bias, where certain codons are used more frequently than their synonymous counterparts, is an interesting phenomenon influenced by three evolutionary forces: mutation, selection, and genetic drift. To better understand how these evolutionary forces affect codon usage bias, an extensive study to detect how codon usage patterns change across species is required. This study investigated 668 single-copy orthologous genes independently in 29 Drosophila species to determine how the codon usage patterns change with phylogenetic distance. We found a strong correlation between phylogenetic distance and codon usage bias and observed striking differences in codon preferences between the two subgenera Drosophila and Sophophora. As compared to the subgenus Sophophora, species of the subgenus Drosophila showed reduced codon usage bias and a reduced preference specifically for codons ending with C, except for codons with G in the second position. We found that codon usage patterns in all species were influenced by the nucleotides in the codon's 2nd and 3rd positions rather than the biochemical properties of the amino acids encoded. We detected a concordance between preferred codons and preferred dinucleotides (at positions 2 and 3 of codons). Furthermore, we observed an association between speciation, codon preferences, and dinucleotide preferences. Our study provides the foundation to understand how selection acts on dinucleotides to influence codon usage bias.
Sudipta Tung, Christopher W Bakerlee, Angela M Phillips, Alex N Nguyen Nguyen Ba,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab192

Spontaneous whole-genome duplication, or autodiploidization, is a common route to adaptation in experimental evolution of haploid budding yeast populations. The rate at which autodiploids fix in these populations appears to vary across strain backgrounds, but the genetic basis of these differences remains poorly characterized. Here we show that the frequency of autodiploidization differs dramatically between two closely related laboratory strains of Saccharomyces cerevisiae, BY4741 and W303. To investigate the genetic basis of this difference, we crossed these strains to generate hundreds of unique F1 segregants and tested the tendency of each segregant to autodiplodize across hundreds of generations of laboratory evolution. We find that variants in the SSD1 gene are the primary genetic determinant of differences in autodiploidization. We then used multiple laboratory and wild strains of S. cerevisiae to show that clonal populations of strains with a functional copy of SSD1 autodiploidize more frequently in evolution experiments, while knocking out this gene or replacing it with the W303 allele reduces autodiploidization propensity across all genetic backgrounds tested. These results suggest a potential strategy for modifying rates of spontaneous whole-genome duplications in laboratory evolution experiments in haploid budding yeast. They may also have relevance to other settings in which eukaryotic genome stability plays an important role, such as biomanufacturing and the treatment of pathogenic fungal diseases and cancers.
Arati Joshi, Meryl J Musicante,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab185

Centromeres are essential for genetic inheritance—they prevent aneuploidy by providing a physical link between DNA and chromosome segregation machinery. In many organisms, centromeres form at sites of repetitive DNAs that help establish the chromatin architecture required for centromere function. These repeats are often rapidly evolving and subject to homogenization, which causes the expansion of novel repeats and sequence turnover. Thus, centromere sequence varies between individuals and across species. This variation can affect centromere function. We utilized Schizosaccharomyces pombe to assess the relationship between centromere sequence and structure and determine how sensitive this relationship is to genetic variation. In S. pombe, nucleating sequences within centromere repeats recruit heterochromatin via pathways that include the RNA-interference (RNAi) pathway. Heterochromatin, in turn, contributes to centromere function through its participation in three essential processes; establishment of a kinetochore, cohesion of sister chromatids, and suppression of recombination. Here, we show that a centromere element containing RevCen, a target of the RNAi pathway, establishes heterochromatin and gene silencing when relocated to a chromosome arm. Within this RevCen-containing element (RCE), a highly conserved domain is necessary for full heterochromatin nucleation but cannot establish heterochromatin independently. We characterize the ten unique RCEs in the S. pombe centromere assembly, which range from 60-100% identical, and show that all are sufficient to establish heterochromatin. These data affirm the importance of centromere repeats in establishing heterochromatin and suggest there is flexibility within the sequences that mediate this process. Such flexibility may preserve centromere function despite the rapid evolution of centromere repeats.
Peng Sun, , Hideaki Asakuma, Roeland E Voorrips, Jianmin Fu, Ryutaro Tao
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab188

Unreduced gametes (2n gametes), possessing double the haploid genome, whatever ploidy that happens to be, are a common source of ploidy variation in plant populations. First and second division restitution (FDR and SDR) are the dominant mechanisms of 2n gamete production; all else being equal, FDR gametes have a higher degree of heterozygosity, thus they are advantageous in breeding. The discrimination of these mechanisms from the consequence of hybridization is challenging, especially in higher polyploids, and usually requires information on centromere location. In this study, we propose a genotyping-based strategy to uncover the mechanisms of 2n gamete formation in progeny that has a higher ploidy than its parents. Simulation of 2n gamete production revealed that FDR and SDR pathways can be discriminated based on allele transmission patterns alone without information on centromere location. We applied this strategy to study the formation mechanism of a nonaploid Diospyros kaki ‘Akiou’, which was bred via hybridization between D. kaki hexaploid cultivars. The result demonstrated that ‘Akiou’ was derived from the fertilization of a normal female gamete by a 2n male gamete, and that this 2n gamete was produced through FDR. Consequently, the distinct duplex transmission pattern in the FDR gamete enabled us to infer the genomic characteristics of polyploid persimmon. The method could be tested only for the plant being polypoid, which allows for the ability to discriminate causes of 2n gamete formation using allele dosage in progeny, and will be useful in future studies of polyploid genomics.
Kimihide Ibaraki, Mihoko Nakatsuka, Takashi Ohsako, Masahide Watanabe, Yu Miyazaki, Machi Shirakami, Timothy L Karr, Rikako Sanuki, Masatoshi Tomaru, Toshiyuki Takano-Shimizu-Kouno
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab183

Male reproduction encompasses many essential cellular processes and interactions. As a focal point for these events, sperm offer opportunities for advancing our understanding of sexual reproduction at multiple levels during development. Using male sterility genes identified in human, mouse and fruit fly databases as a starting point, 103 Drosophila melanogaster genes were screened for their association with male sterility by tissue-specific RNAi knockdown and CRISPR/Cas9-mediated mutagenesis. This list included 56 genes associated with male infertility in the human databases, but not found in the Drosophila database, resulting in the discovery of 63 new genes associated with male fertility in Drosophila. The phenotypes identified were categorized into six distinct classes affecting sperm development. Interestingly, the second largest class (Class VI) caused sterility despite apparently normal testis and sperm morphology suggesting that these proteins may have functions in the mature sperm following spermatogenesis. We focused on one such gene, Rack 1, and found that it plays an important role in two developmental periods, in early germline cells or germline stem cells and in spermatogenic cells or sperm. Taken together, many genes are yet to be identified and their role in male reproduction, especially after ejaculation, remains to be elucidated in Drosophila, where a wealth of data from human and other model organisms would be useful.
, Huadong Ren, Xiaohua Yao, Kailiang Wang, Jun Chang
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab182

Pecan is rich in bioactive components such as fatty acids and flavonoids and is an important nut type worldwide. Therefore, the molecular mechanisms of phytochemical biosynthesis in pecan are a focus of research. Recently, a draft genome and several transcriptomes have been published. However, the full-length mRNA transcripts remain unclear, and the regulatory mechanisms behind the quality components biosynthesis and accumulation have not been fully investigated. In this study, single-molecule long read sequencing technology was used to obtain full-length transcripts of pecan kernels. In total, 37 504 isoforms of 16 702 genes were mapped to the reference genome. The numbers of known isoforms, new isoforms, and novel isoforms were 9013 (24.03%), 26 080 (69.54%), and 2411 (6.51%), respectively. Over 80% of the transcripts (30 751, 81.99%) had functional annotations. A total of 15 465 alternative splicing (AS) events and 65 761 alternative polyadenylation events were detected; wherein, the retained intron was the predominant type (5652, 36.55%) of AS. Furthermore, 1894 long non-coding RNAs and 1643 transcription factors were predicted using bioinformatics methods. Finally, the structural genes associated with fatty acid (FA) and flavonoid biosynthesis were characterized. A high frequency of AS accuracy (70.31%) was observed in FA synthesis-associated genes. The present study provides a full-length transcriptome dataset of pecan kernels, which will significantly enhance the understanding of the regulatory basis of phytochemical biosynthesis during pecan kernel maturation.
Jaclyn M Noshay, Zhikai Liang, Peng Zhou, Peter A Crisp, Alexandre P Marand, Candice N Hirsch, Robert J Schmitz,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab190

Accessible chromatin and unmethylated DNA are associated with many genes and cis-regulatory elements. Attempts to understand natural variation for accessible chromatin regions (ACRs) and unmethylated regions (UMRs) often rely upon alignments to a single reference genome. This limits the ability to assess regions that are absent in the reference genome assembly and monitor how nearby structural variants influence variation in chromatin state. In this study, de novo genome assemblies for four maize inbreds (B73, Mo17, Oh43 and W22) are utilized to assess chromatin accessibility and DNA methylation patterns in a pan-genome context. A more complete set of UMRs and ACRs can be identified when chromatin data is aligned to the matched genome rather than a single reference genome. While there are UMRs and ACRs present within genomic regions that are not shared between genotypes, these features are 6-12 fold enriched within regions between genomes. Characterization of UMRs present within shared genomic regions reveals that most UMRs maintain the unmethylated state in other genotypes with only ∼5% being polymorphic between genotypes. However, the majority (71%) of UMRs that are shared between genotypes only exhibit partial overlaps suggesting that the boundaries between methylated and unmethylated DNA are dynamic. This instability is not solely due to sequence variation as these partially overlapping UMRs are frequently found within genomic regions that lack sequence variation. The ability to compare chromatin properties among individuals with structural variation enables pan-epigenome analyses to study the sources of variation for accessible chromatin and unmethylated DNA.
Matheus Baseggio, Matthew Murray, Di Wu, Gregory Ziegler, Nicholas Kaczmar, James Chamness, John P Hamilton, C Robin Buell, Olena K Vatamaniuk, Edward S Buckler, et al.
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab186

Despite being one of the most consumed vegetables in the United States, the elemental profile of sweet corn (Zea mays L.) is limited in its dietary contributions. To address this through genetic improvement, a genome-wide association study was conducted for the concentrations of 15 elements in fresh kernels of a sweet corn association panel. In concordance with mapping results from mature maize kernels, we detected a probable pleiotropic association of zinc and iron concentrations with nicotianamine synthase5 (nas5), which purportedly encodes an enzyme involved in synthesis of the metal chelator nicotianamine. Additionally, a pervasive association signal was identified for cadmium concentration within a recombination suppressed region on chromosome 2. The likely causal gene underlying this signal was heavy metal ATPase3 (hma3), whose counterpart in rice, OsHMA3, mediates vacuolar sequestration of cadmium and zinc in roots, whereby regulating zinc homeostasis and cadmium accumulation in grains. In our association panel, hma3 associated with cadmium but not zinc accumulation in fresh kernels. This finding implies that selection for low cadmium will not affect zinc levels in fresh kernels. Although less resolved association signals were detected for boron, nickel, and calcium, all 15 elements were shown to have moderate predictive abilities via whole-genome prediction. Collectively, these results help enhance our genomics-assisted breeding efforts centered on improving the elemental profile of fresh sweet corn kernels.
Santosh Sharma, Shannon R M Pinson, David R Gealy,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab178

Root system architecture (RSA) is a crucial factor in resource acquisition and plant productivity. Roots are difficult to phenotype in the field, thus new tools for predicting phenotype from genotype are particularly valuable for plant breeders aiming to improve RSA. This study identifies quantitative trait loci (QTLs) for RSA and agronomic traits in a rice (Oryza sativa) recombinant inbred line (RIL) population derived from parents with contrasting RSA traits (PI312777 x Katy). The lines were phenotyped for agronomic traits in the field, and separately grown as seedlings on agar plates which were imaged to extract RSA trait measurements. QTLs were discovered from conventional linkage analysis and from a machine learning approach using a Bayesian network (BN) consisting of genome-wide SNP data and phenotypic data. The genomic prediction abilities (GPAs) of multi-QTL models and the BN analysis were compared with the several standard genomic prediction methods. We found GPAs were improved using multi-trait (BN) compared to single trait genomic prediction in traits with low to moderate heritability. Two groups of individuals were selected based on genomic predictions and a modified rank sum index (GSRI) indicating their divergence across multiple RSA traits. Selections made on genomic predictions did result in differences between the group means for numerous RSA. The ranking accuracy across RSA traits among the individual selected RILs ranged from 0.14 for root volume to 0.59 for lateral root tips. We conclude that the multi-trait genomic prediction model using BN can in some cases improve the GPA of RSA and agronomic traits, and the GSRI approach is useful to simultaneously select for a desired set of RSA traits in a segregating population.
Deanne Francis, Shila Ghazanfar, Essi Havula, James R Krycer, Dario Strbenac, Alistair Senior, Annabel Y Minard, Thomas Geddes, Marin Nelson, Fiona Weiss, et al.
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab171

Genetic and environmental factors play a major role in metabolic health. However, they do not act in isolation, as a change in an environmental factor such as diet may exert different effects based on an individual’s genotype. Here, we sought to understand how such gene-diet interactions influenced nutrient storage and utilization, a major determinant of metabolic disease. We subjected 178 inbred strains from the Drosophila Genetic Reference Panel (DGRP), to diets varying in sugar, fat and protein. We assessed starvation resistance, a holistic phenotype of nutrient storage and utilization that can be robustly measured. Diet influenced the starvation resistance of most strains, but the effect varied markedly between strains such that some displayed better survival on a high carbohydrate diet compared to a high fat diet while others had opposing responses, illustrating a considerable gene x diet interaction. This demonstrates that genetics plays a major role in diet responses. Furthermore, heritability analysis revealed that the greatest genetic variability arose from diets either high in sugar or high in protein. To uncover the genetic variants that contribute to the heterogeneity in starvation resistance, we mapped 566 diet-responsive SNPs in 293 genes, 174 of which have human orthologues. Using whole-body knockdown, we identified two genes that were required for glucose tolerance, storage and utilization. Strikingly, flies in which the expression of one of these genes, CG4607 a putative homolog of a mammalian glucose transporter, was reduced at the whole-body level, displayed lethality on a high carbohydrate diet. This study provides evidence that there is a strong interplay between diet and genetics in governing survival in response to starvation, a surrogate measure of nutrient storage efficiency and obesity. It is likely that a similar principle applies to higher organisms thus supporting the case for nutrigenomics as an important health strategy.
Jullien M Flynn, Emily J Brown, Andrew G Clark
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab184

Simple sequence tandem repeats are among the most rapidly evolving compartments of the genome. Some repeat expansions are associated with mammalian disease or meiotic segregation distortion, yet the rates of copy number change across generations are not well known. Here, we use 14 distinct sub-lineages of the C57BL/6 and C57BL/10 inbred mouse strains, which have been evolving independently over about 300 generations, to estimate the rates of copy number changes in genome-wide tandem repeats. Rates of change varied across repeats and across lines. Notably, CAG, whose expansions in coding regions are associated with many neurological and genetic disorders, was highly stable in copy number, likely indicating stabilizing selection. Rates of change were positively correlated with copy number, but the direction and magnitude of changes varied across lines. Some mouse lines experienced consistent losses or gains across most simple repeats, but this did not correlate with copy number changes in complex repeats. Rates of copy number change were similar between simple repeats and the more abundant complex repeats after normalization by copy number. Finally, the Y-specific centromeric repeat had a 4-fold higher rate of change than the homologous centromeric repeat on other chromosomes. Structural differences in satellite complexity, or restriction to the Y chromosome and elevated mutation rates of the male germline, may explain the higher rate of change. Overall, our work underscores the mutational fluidity of long tandem arrays of repeats, and the correlations and constraints between genome-wide tandem repeats which suggest that turnover is not a completely neutral process.
, Tilman Schell, Markus Pfenninger
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab180

Among all molluscs, land snails are a scientifically and economically interesting group comprising edible species, alien species and agricultural pests. Yet, despite their high diversity, the number of genome drafts publicly available is still scarce. Here, we present the draft genome assembly of the land snail Candidula unifasciata, a widely distributed species along central Europe, belonging to the Geomitridae family, a highly diversified taxon in the Western-Palearctic region. We performed whole genome sequencing, assembly and annotation of an adult specimen based on PacBio and Oxford Nanopore long read sequences as well as Illumina data. A genome draft of about 1.29 Gb was generated with a N50 length of 246 kb. More than 60% of the assembled genome was identified as repetitive elements. 22,464 protein-coding genes were identified in the genome, of which 62.27% were functionally annotated. This is the first assembled and annotated genome for a geometrid snail and will serve as reference for further evolutionary, genomic and population genetic studies of this important and interesting group.
, Aisha Ellahi, Kyudong Han, Jagdish Suresh Patel, James T Van Leuven, Sara L Sawyer
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab163

The ubiquitous DNA repair protein, Ku70p, has undergone extensive copy number expansion during primate evolution. Gene duplications of KU70 have the hallmark of long interspersed element-1 mediated retrotransposition with evidence of target-site duplications, the poly-A tails, and the absence of introns. Evolutionary analysis of this expanded family of KU70-derived “NUKU” retrocopies reveals that these genes are both ancient and also actively being created in extant primate species. NUKU retrocopies show evidence of functional divergence away from KU70, as evinced by their altered pattern of tissue expression and possible tissue specific translation. Molecular modeling predicted that amino acid changes in Nuku2p at the interaction interface with Ku80p would prevent the assembly of the Ku heterodimer. The lack of Nuku2p-Ku80p interaction was confirmed by yeast two-hybrid assay, which contrasts the robust interaction of Ku70p-Ku80p. While several NUKU retrocopies appear to have been degraded by mutation, NUKU2 shows evidence of positive natural selection, suggesting that this retrocopy is undergoing neofunctionalization. Although Nuku proteins do not appear to antagonize retrovirus transduction in cell culture, the observed expansion and rapid evolution of NUKUs could be being driven by alternative selective pressures related to infectious disease or an undefined role in primate physiology.
, Lucila I Buzzi, Carlos P Modenutti, Ana Acosta-Montalvo, , María S Rossi
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab093

In the article by D. A. Caraballo, L. I. Buzzi, C. P. Modenutti, A. Acosta-Montalvo, O. A. Castro, and M. S. Rossi (G3: Genes|Genomes|Genetics 10(2): 755-768) entitled “Origin and Evolution of Two Independently Duplicated Genes Encoding UDP- Glucose: Glycoprotein Glucosyltransferases in Caenorhabditis and Vertebrates”, on page 755 the original manuscript within the author list did not acknowledge Dr. Olga A. Castro as a co-corresponding author. There was also an indication that Drs. Olga A. Castro and María S. Rossi were equal contributors which has been removed. In addition, the contact for Dr. Caraballo originally listed as “[email protected]” has been updated to “[email protected]”.
Chi Yang, Lu Ma, Donglai Xiao, Xiaoyu Liu, Xiaoling Jiang, Zhenghe Ying, Yanquan Lin
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab173

Sparassis latifolia is a valuable edible mushroom cultivated in China. In 2018, our research group reported an incomplete and low-quality genome of S. latifolia obtained by Illumina HiSeq 2500 sequencing. These limitations in the available genome have constrained genetic and genomic studies in this mushroom resource. Herein, an updated draft genome sequence of S. latifolia was generated by Oxford Nanopore sequencing and the Hi-C technique. A total of 8.24 Gb of Oxford Nanopore long reads representing ∼198.08X coverage of the S. latifolia genome were generated. Subsequently, a high-quality genome of 41.41 Mb, with scaffold and contig N50 sizes of 3.31 Mb and 1.51 Mb, respectively, was assembled. Hi-C scaffolding of the genome resulted in 12 pseudochromosomes containing 93.56% of the bases in the assembled genome. Genome annotation further revealed that 17.47% of the genome was composed of repetitive sequences. In addition, 13,103 protein-coding genes were predicted, among which 98.72% were functionally annotated. BUSCO assay results further revealed that there were 92.07% complete BUSCOs. The improved chromosome-scale assembly and genome features described here will aid further molecular elucidation of various traits, breeding of S. latifolia, and evolutionary studies with related taxa.
Anne Krogh Nøhr, Kristian Hanghøj, Genis Garcia Erill, Zilong Li, ,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab174

Estimation of relatedness between pairs of individuals is important in many genetic research areas. When estimating relatedness, it is important to account for admixture if this is present. However, the methods that can account for admixture are all based on genotype data as input, which is a problem for low-depth next-generation sequencing (NGS) data from which genotypes are called with high uncertainty. Here we present a software tool, NGSremix, for maximum likelihood estimation of relatedness between pairs of admixed individuals from low-depth NGS data, which takes the uncertainty of the genotypes into account via genotype likelihoods. Using both simulated and real NGS data for admixed individuals with an average depth of 4x or below we show that our method works well and clearly outperforms all the commonly used state-of-the-art relatedness estimation methods PLINK, KING, relateAdmix, and ngsRelate that all perform quite poorly. Hence, NGSremix is a useful new tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix is implemented in C/C ++ in a multi-threaded software and is freely available on Github
Lauren J Frazee, , Dinusha C Maheepala, Alannie-Grace Grant, , , ,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab177

The evolutionary transition from outcross-fertilization to self-fertilization is one of the most common in angiosperms and is often associated with a parallel shift in floral morphological and developmental traits, such as reduced flower size and pollen to ovule ratios, known as the ‘selfing syndrome’. How these convergent phenotypes arise, the extent to which they are shaped by selection, and the nature of their underlying genetic basis are unsettled questions in evolutionary biology. The genus Collinsia (Plantaginaceae) includes seven independent transitions from outcrossing or mixed mating to high selfing rates accompanied by selfing syndrome traits. Accordingly, Collinsia represents an ideal system for investigating this parallelism, but requires genomic resource development. We present a high quality de novo genome assembly for the highly selfing species C. rattanii. To begin addressing the basis of selfing syndrome developmental shifts, we evaluate and contrast patterns of gene expression from floral transcriptomes across three stages of bud development for C. rattanii and its outcrossing sister species C. linearis. Relative to C. linearis, total gene expression is less variable among individuals and bud stages in C. rattanii. In addition, there is a common pattern among differentially expressed genes: lower expression levels that are more constant across bud development in C. rattanii relative to C. linearis. Transcriptional regulation of enzymes involved in pollen formation specifically in early bud development may influence floral traits that distinguish selfing and outcrossing Collinsia species through pleiotropic functions. Future work will include additional Collinsia outcrossing-selfing species pairs to identify genomic signatures of parallel evolution.
Weisheng Wu, Jennie L Lovett, Kerby Shedden, Beverly I Strassmann,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab176

Genomic imprinting is an epigenetic mechanism that results in allele specific expression (ASE) based on parent of origin. It is known to play a role in the prenatal and postnatal allocation of maternal resources in mammals. ASE detected by whole transcriptome RNA-seq (wht-RNAseq) has been widely used to analyze imprinted genes using reciprocal crosses in mice to generate large numbers of informative SNPs. Studies in humans are more challenging due to the paucity of SNPs and the poor preservation of RNA in term placentas and other tissues. Targeted RNA-seq (tar-RNAseq) can potentially mitigate these challenges by focusing sequencing resources on the regions of interest in the transcriptome. Here we compared tar-RNAseq and wht-RNAseq in a study of ASE in known imprinted genes in placental tissue collected from a healthy human cohort in Mali, West Africa. As expected, tar-RNAseq substantially improved the coverage of SNPs. Compared to wht-RNAseq, tar-RNAseq produced on average four times more SNPs in twice as many genes per sample and read depth at the SNPs increased 4-fold. In previous research on humans, discordant ASE values for SNPs of the same gene have limited the ability to accurately quantify ASE. We show that tar-RNAseq reduces this limitation as it unexpectedly increased the concordance of ASE between SNPs of the same gene, even in cases of degraded RNA. Studies aimed at discovering associations between individual variation in ASE and phenotypes in mammals and flowering plants will benefit from the improved power and accuracy of tar-RNAseq.
Santosh Kumar, Andrew C Olson,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab167

Gαo is the alpha subunit of the major heterotrimeric G protein in neurons and mediates signaling by every known neurotransmitter, yet the signaling mechanisms activated by Gαo remain to be fully elucidated. Genetic analysis in Caenorhabditis elegans has shown that Gαo signaling inhibits neuronal activity and neurotransmitter release, but studies of the molecular mechanisms underlying these effects have been limited by lack of tools to complement genetic studies with other experimental approaches. Here we demonstrate that inserting the green fluorescent protein (GFP) into an internal loop of the Gαo protein results in a tagged protein that is functional in vivo and that facilitates cell biological and biochemical studies of Gαo. Transgenic expression of Gαo-GFP rescues the defects caused by loss of endogenous Gαo in assays of egg laying and locomotion behaviors. Defects in body morphology caused by loss of Gαo are also rescued by Gαo-GFP. The Gαo-GFP protein is localized to the plasma membrane of neurons, mimicking localization of endogenous Gαo. Using GFP as an epitope tag, Gαo-GFP can be immunoprecipitated from C. elegans lysates to purify Gαo protein complexes. The Gαo-GFP transgene reported in this study enables studies involving in vivo localization and biochemical purification of Gαo to complement the already well-developed genetic analysis of Gαo signaling.
Celine Caseys, Gongjun Shi, Nicole Soltis, Raoni Gwinner, Jason Corwin, Susanna Atwell,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab175

Botrytis cinerea is a fungal pathogen that causes necrotic disease on more than a thousand known hosts widely spread across the plant kingdom. How B. cinerea interacts with such extensive host diversity remains largely unknown. To address this question, we generated an infectivity matrix of 98 strains of B. cinerea on 90 genotypes representing eight host plants. This experimental infectivity matrix revealed that the disease outcome is largely explained by variations in either the host resistance or pathogen virulence. However, the specific interactions between host and pathogen account for 16% of the disease outcome. Furthermore, the disease outcomes cluster among genotypes of a species but are independent of the relatedness between hosts. When analyzing the host specificity and virulence of B. cinerea, generalist strains are predominant. In this fungal necrotroph, specialization may happen by a loss in virulence on most hosts rather than an increase of virulence on a specific host. To uncover the genetic architecture of Botrytis host specificity and virulence, a genome-wide association study (GWAS) was performed and revealed up to 1492 genes of interest. The genetic architecture of these traits is widespread across B. cinerea genome. The complexity of the disease outcome might be explained by hundreds of functionally diverse genes putatively involved in adjusting the infection to diverse hosts.
Aleksandra Beric, MaKenzie E Mabry, Alex E Harkess, Julia Brose, M Eric Schranz, Gavin C Conant, Patrick P Edger, Blake C Meyers,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab140

Genome sizes of plants have long piqued the interest of researchers due to the vast differences among organisms. However, the mechanisms that drive size differences have yet to be fully understood. Two important contributing factors to genome size are expansions of repetitive elements, such as transposable elements (TEs), and whole-genome duplications (WGD). Although studies have found correlations between genome size and both TE abundance and polyploidy, these studies typically test for these patterns within a genus or species. The plant order Brassicales provides an excellent system to further test if genome size evolution patterns are consistent across larger time scales, as there are numerous WGDs. This order is also home to one of the smallest plant genomes, Arabidopsis thaliana—chosen as the model plant system for this reason—as well as to species with very large genomes. With new methods that allow for TE characterization from low-coverage genome shotgun data and 71 taxa across the Brassicales, we confirm the correlation between genome size and TE content, however, we are unable to reconstruct phylogenetic relationships and do not detect any shift in TE abundance associated with WGD.
Tiffany Ou, Gary Huang, Beth Wilson, Paul Gontarz, James B Skeath,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab172

The mechanisms that determine the final topology of skeletal muscles remain largely unknown. We have been developing Drosophila body wall musculature as a model to identify and characterize the pathways that control muscle size, shape, and orientation during embryogenesis (Johnson et al., 2013; Williams et al., 2015; Yang et al., 2020a; Yang et al., 2020b). Our working model argues muscle morphogenesis is regulated by (1) extracellular guidance cues that direct muscle cells toward muscle attachment sites, and (2) contact dependent interactions between muscles and tendon cells. While we have identified several pathways that regulate muscle morphogenesis, our understanding is far from complete. Here we report the results of a recent EMS-based forward genetic screen that identified a myriad of loci not previously associated with muscle morphogenesis. We recovered new alleles of known muscle morphogenesis genes, including back seat driver, kon-tiki, thisbe, and tumbleweed, arguing our screen had the depth and precision to uncover myogenic genes. We also identified new alleles of spalt-major, barren, and patched that presumably disrupt independent muscle morphogenesis pathways. Equally as important, our screen shows that at least 11 morphogenetic loci remain to be mapped and characterized. Our screen has developed exciting new tools to study muscle morphogenesis, which may provide future insights into the mechanisms that regulate skeletal muscle topology.
Saptaparni Bandyopadhyay, Joseph Douglass, Sebastian Kapell, Nazimuddin Khan, Fabiana Feitosa-Suntheimer, Jenny A Klein, Jasmine Temple, Jayce Brown-Culbertson, Alexander H Tavares, , et al.
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab169

Knock-in of large transgenes by Cas9-mediated homology-directed repair (HDR) is an extremely inefficient process. Although the use of single-stranded oligonucleotides (ssODN) as an HDR donor has improved the integration of smaller transgenes, they do not support efficient insertion of large DNA sequences. In an effort to gain insights into the mechanism(s) governing the HDR-mediated integration of larger transgenes and to improve the technology, we conducted knock-in experiments targeting the human EMX1 locus and applied rigorous genomic PCR analyses in the human HEK293 cell line. This exercise revealed an unexpected molecular complication arising from the transgene HDR being initiated at the single homology arm and the subsequent genomic integration of plasmid backbone sequences. To pivot around this problem, we devised a novel PCR-constructed template containing Blocked Long 3' Single-Stranded Overhangs (BL3SSO) that greatly improved the efficiency of bona fide Cas9-stimulated HDR at the EMX1 locus. We further refined BL3SSO technology and successfully used it to insert GFP transgenes into two important interferon-stimulated gene (ISG) loci, Viperin/RSAD2 and ISG15. This study demonstrates the utility of the BL3SSO platform for inserting long DNA sequences into both constitutive and inducible endogenous loci to generate novel human cell lines for the study of important biological processes.
, Nhung Nguyen, Steven B Roberts
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab148

Symbiosis with protists is common among cnidarians such as corals and sea anemones and is associated with homeostatic and phenotypic changes in the host that could have epigenetic underpinnings, such as methylation of CpG dinucleotides. We leveraged the sensitivity to base modifications of nanopore sequencing to probe the effect of symbiosis with the chlorophyte Elliptochloris marina on methylation in the sea anemone Anthopleura elegantissima. We first validated the approach by comparison of nanopore-derived methylation levels with CpG depletion analysis of a published transcriptome, finding that high methylation levels are associated with CpG depletion as expected. Next, using reads generated exclusively from aposymbiotic anemones, a largely complete draft genome comprising 243 Mb was assembled. Reads from aposymbiotic and symbiotic sea anemones were then mapped to this genome and assessed for methylation using the program Nanopolish, which detects signal disruptions from base modifications as they pass through the nanopore. Based on assessment of 452,841 CpGs for which there was adequate read coverage (approximately 8% of the CpGs in the genome), symbiosis with E. marina was, surprisingly, associated with only subtle changes in the host methylome. However, we did identify one extended genomic region with consistently higher methylation among symbiotic individuals. The region was associated with a DNA polymerase zeta that is noted for its role in translesion synthesis, which opens interesting questions about the biology of this symbiosis. Our study highlights the power and relative simplicity of nanopore sequencing for studies of nucleic acid base modifications in non-model species.
Gaotian Zhang, Jake D Mostad,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab168

Life history traits underlie the fitness of organisms and are under strong natural selection. A new mutation that positively impacts a life history trait will likely increase in frequency and become fixed in a population (e.g. a selective sweep). The identification of the beneficial alleles that underlie selective sweeps provides insights into the mechanisms that occurred during the evolution of a species. In the global population of Caenorhabditis elegans, we previously identified selective sweeps that have drastically reduced chromosomal-scale genetic diversity in the species. Here, we measured the fecundity of 121 wild C. elegans strains, including many recently isolated divergent strains from the Hawaiian islands and found that strains with larger swept genomic regions have significantly higher fecundity than strains without evidence of the recent selective sweeps. We used genome-wide association (GWA) mapping to identify three quantitative trait loci (QTL) underlying the fecundity variation. Additionally, we mapped previous fecundity data from wild C. elegans strains and C. elegans recombinant inbred advanced intercross lines that were grown in various conditions and detected eight QTL using GWA and linkage mappings. These QTL show the genetic complexity of fecundity across this species. Moreover, the haplotype structure in each GWA QTL region revealed correlations with recent selective sweeps in the C. elegans population. North American and European strains had significantly higher fecundity than most strains from Hawaii, a hypothesized origin of the C. elegans species, suggesting that beneficial alleles that caused increased fecundity could underlie the selective sweeps during the worldwide expansion of C. elegans.
Justin L Conover, ,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab170

With the rapid rise in availability of high-quality genomes for closely related species, methods for orthology inference that incorporate synteny are increasingly useful. Polyploidy perturbs the 1:1 expected frequencies of orthologs between two species, complicating the identification of orthologs. Here we present a method of ortholog inference, Ploidy-aware Syntenic Orthologous Networks Identified via Collinearity (pSONIC). We demonstrate the utility of pSONIC using four species in the cotton tribe (Gossypieae), including one allopolyploid, and place between 75-90% of genes from each species into nearly 32,000 orthologous groups, 97% of which consist of at most singletons or tandemly duplicated genes – 58.8% more than comparable methods that do not incorporate synteny. We show that 99% of singleton gene groups follow the expected tree topology, and that our ploidy-aware algorithm recovers 97.5% identical groups when compared to splitting the allopolyploid into its two respective subgenomes, treating each as separate “species”.
Mafalda M Dias, João Vidigal, Daniela P Sequeira, Paula M Alves, Ana P Teixeira,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab166

Insect Trichoplusia ni High FiveTM (Hi5) cells have been widely explored for production of heterologous proteins, traditionally mostly using the lytic baculovirus expression vector system (BEVS), and more recently using virus-free transient gene expression systems. Stable expression in such host cells would circumvent the drawbacks associated with both systems when it comes to scale-up and implementation of more efficient high-cell density process modes for the manufacturing of biologics. In this work, we combined Flipase (Flp) recombinase-mediated cassette exchange (RMCE) with fluorescence-activated cell sorting (FACS) for generating a stable master clonal Hi5 cell line with the flexibility to express single or multiple proteins of interest from a tagged genomic locus. The 3-step protocol herein implemented consisted of (i) introducing the RMCE docking cassette into the cell genome by random integration followed by selection in Hygromycin B and FACS (Hi5-tagging population), (ii) eliminating cells tagged in loci with low recombination efficiency by transfecting the tagging population with an eGFP-containing target cassette followed by selection in G418 and FACS (Hi5-RMCE population), and (iii) isolation of pure eGFP-expressing cells by FACS and expansion to suspension cultures (Hi5-RMCE master clone). Exchangeability of the locus in the master clone was demonstrated in small-scale suspension cultures by replacing the target cassette by one containing a single protein (i.e. iCherry, as an intracellular protein model) or two proteins (i.e. influenza HA and M1 for virus-like particles production, as an extracellular protein model). Overall, the stable insect Hi5 cell platform herein assembled has the potential to assist and accelerate biologics development.
Valérie Gautier, Emilie Levert, Tatiana Giraud,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab159

Melanins are pigments used by fungi to withstand various stresses and to strengthen vegetative and reproductive structures. In Sordariales fungi, their biosynthesis starts with a condensation step catalyzed by an evolutionary-conserved polyketide synthase. Here we show that complete Inactivation of this enzyme in the model ascomycete Podospora anserina through targeted deletion of the PaPks1 gene results in reduced female fertility, in contrast to a previously analyzed nonsense mutation in the same gene that retains full fertility. We also show the utility of PaPks1 mutants for detecting rare genetic events in P. anserina, such as parasexuality and possible fertilization and/or apomixis of nuclei devoid of mating type gene.
Jianqin Jiao, Kanisha Kavdia, Vishwajeeth Pagala, Lance Palmer, David Finkelstein, Yiping Fan, Junmin Peng,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab165

Recent evidence indicates that the composition of the ribosome is heterogeneous and that multiple types of specialized ribosomes regulate the synthesis of specific protein subsets. In Drosophila, we find that expression of the ribosomal RpS28 protein variants RpS28a and RpS28-like preferentially occurs in the germline, a tissue resistant to aging, and that it significantly declines in skeletal muscle during aging. Muscle-specific overexpression of RpS28a at levels similar to those seen in the germline decreases early mortality and promotes the synthesis of a subset of proteins with known anti-aging roles, some of which have preferential expression in the germline. These findings indicate a contribution of specialized ribosomal proteins to the regulation of the muscle proteome during aging.
Elizabeth D Drewnik, Tobias Wiesenfahrt, Ryan B Smit, Ye-Jean Park, Linda M Pallotto,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab164

Actin and myosin mediate the epidermal cell contractions that elongate the Caenorhabditis elegans embryo from an ovoid to a tubular-shaped worm. Contraction occurs mainly in the lateral epidermal cells, while the dorsoventral epidermis plays a more passive role. Two parallel pathways trigger actinomyosin contraction, one mediated by LET-502/Rho kinase and the other by PAK-1/p21 activated kinase. A number of genes mediating morphogenesis have been shown to be sufficient when expressed either laterally or dorsoventrally. Additional genes show either lateral or dorsoventral phenotypes. This led us to a model where contractile genes have discrete functions in one or the other cell type. We tested this by examining several genes for either lateral or dorsoventral sufficiency. LET-502 expression in the lateral cells was sufficient to drive elongation. MEL-11/Myosin phosphatase, which antagonizes contraction, and PAK-1 were expected to function dorsoventrally, but we could not detect tissue-specific sufficiency. Double mutants of lethal alleles predicted to decrease lateral contraction with those thought to increase dorsoventral force were previously shown to be viable. We hypothesized that these mutant combinations shifted the contractile force from the lateral to the dorsoventral cells and so the embryos would elongate with less lateral cell contraction. This was tested by examining ten single and double mutant strains. In most cases, elongation proceeded without a noticeable alteration in lateral contraction. We suggest that many embryonic elongation genes likely act in both lateral and dorsoventral cells, even though they may have their primary focus in one or the other cell type.
Binhui Guo, Yi Dai, Lin Chen, Zhenzhi Pan,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab162

In plants, nitrate acts not only as a signaling molecule that affects plant development but also as a nutrient. The development of plant roots, which directly absorb nutrients, is greatly affected by nitrate supply. Alternative gene splicing plays a crucial role in the plant stress response by increasing transcriptome diversity. The effects of nitrate supply on alternative splicing (AS), however, have not been investigated in soybean roots. We used high-quality high-throughput RNA-sequencing data to investigate genome-wide AS events in soybean roots in response to various levels of nitrate supply. In total, we identified 355 nitrate-responsive AS events between optimal and high nitrate levels (NH), 335 nitrate-responsive AS events between optimal and low nitrate levels (NL), and 588 nitrate-responsive AS events between low and high nitrate levels (NLH). RI and A3SS were the most common AS types; in particular, they accounted for 67% of all AS events under all conditions. This increased complex and diversity of AS events regulation might be associated with the soybean response to nitrate. Functional ontology enrichment analysis suggested that the differentially splicing genes were associated with several pathways, including spliceosome, base excision repair, mRNA surveillance pathway and so on. Finally, we validated several AS events using reverse transcription–polymerase chain reaction to confirm our RNA-seq results. In summary, we characterized the features and patterns of genome-wide AS in the soybean root exposed to different nitrate levels, and our results revealed that AS is an important mechanism of nitrate-response regulation in the soybean root.
, Alfred Ozimati, Peter Kulakow, Michael A Gore, Marnin D Wolfe, Ephraim Nuwamanya, Chiedozie Egesi, Robert S Kawuki
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab160

Global efforts are underway to develop cassava with enhanced levels of provitamin A carotenoids to sustainably meet increasing demands for food and nutrition where the crop is a major staple. Herein, we tested the effectiveness of genomic selection for rapid improvement of cassava for total carotenoids content and associated traits. We evaluated 632 clones from Uganda’s provitamin A cassava breeding pipeline and 648 West African introductions. At harvest, each clone was assessed for level of total carotenoids, dry matter content and resistance to cassava brown streak disease. All clones were genotyped with diversity array technology and imputed to a set of 23,431 single nucleotide polymorphic markers. We assessed predictive ability of four genomic prediction methods in scenarios of cross-validation, across population prediction and inclusion of quantitative trait loci markers. Cross-validations produced the highest mean prediction ability for total carotenoids content (0.52) and the lowest for cassava brown streak disease resistance (0.20), with G-BLUP outperforming other models tested. Across population predictions showed low ability of Ugandan population to predict the performance of West African clones, with the highest predictive ability recorded for total carotenoids content (0.34) and the lowest for cassava brown streak disease resistance (0.12) using G-BLUP. By incorporating chromosome 1 markers associated with carotenoids content as independent kernel in the G-BLUP model of a cross-validation scenario, prediction ability slightly improved from 0.52 to 0.58. These results reinforce ongoing efforts aimed at integrating genomic selection into cassava breeding and demonstrate the utility of this tool for rapid genetic improvement.
Vera Pavese, Emile Cavalet-Giorsa, , , , , , Roberto Botta
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab152

The European hazelnut (Corylus avellana L.; 2n = 2x = 22) is a worldwide economically important tree nut that is cross-pollinated due to sporophytic incompatibility. Therefore, any individual plant is highly heterozygous. Cultivars are clonally propagated using mound layering, rooted suckers, and micropropagation. In recent years, the interest in this crop has increased, due to a growing demand related to the recognized health benefits of nut consumption. C. avellana cv “Tonda Gentile delle Langhe” (“TGdL”) is well-known for its high kernel quality, and the premium price paid for this cultivar is an economic benefit for producers in northern Italy. Assembly of a high-quality genome is a difficult task in many plant species because of the high level of heterozygosity. We assembled a chromosome-level genome sequence of “TGdL” with a two-step approach. First, 10X Genomics Chromium Technology was used to create a high-quality sequence, which was then assembled into scaffolds with cv “Tombul” genome as the reference. Eleven pseudomolecules were obtained, corresponding to 11 chromosomes. A total of 11,046 scaffolds remained unplaced, representing 11% of the genome (46,504,161 bp). Gene prediction, performed with Maker-P software, identified 27,791 genes (AED ≤0.4 and 92% of BUSCO completeness), whose function was analyzed with BlastP and InterProScan software. To characterize “TGdL” specific genetic mechanisms, Orthofinder was used to detect orthologs between hazelnut and closely related species. The “TGdL” genome sequence is expected to be a powerful tool to understand hazelnut genetics and allow detection of markers/genes for important traits to be used in targeted breeding programs.
Daniel Mariyappa, Arthur Luhur, Danielle Overton,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab161

The generation of Drosophila stable cell lines have become invaluable for complementing in vivo experiments and as tools for genetic screens. Recent advances utilizing attP/PhiC31 integrase system has permitted the creation of Drosophila cells in which recombination mediated cassette exchange (RMCE) can be utilized to generate stably integrated transgenic cell lines that contain a single copy of the transgene at the desired locus. Current techniques, besides being laborious and introducing extraneous elements, are limited to a handful of cell lines of embryonic origin. Nonetheless, with well over 100 Drosophila cell lines available, including an ever-increasing number CRISPR/Cas9 modified cell lines, a more universal methodology is needed to generate a stably integrated transgenic line from any one of the available Drosophila melanogaster cell lines. Here we describe a toolkit and procedure that combines CRISPR/Cas9 and the PhiC31 integrase system. We have generated and isolated single cell clones containing an Actin5C::dsRed cassette flanked by attP sites into the genome of Kc167 and S2R+ cell lines that mimic the in vivo attP sites located at 25C6 and 99F8 of the Drosophila genome. Furthermore, we tested the functionality of the attP docking sites utilizing two independent GFP expressing constructs flanked by attB sites that permit RMCE and therefore the insertion of any DNA of interest. Lastly, to demonstrate the universality of our methodology and existing constructs, we have successfully integrated the Actin5C::dsRed cassette flanked by attP sites into two different CNS cell lines, ML-DmBG2-c2 and ML-DmBG3-c2. Overall, the reagents and methodology reported here permit the efficient generation of stable transgenic cassettes with minimal change in the cellular genomes in existing D. melanogaster cell lines.
Aleen D Saxton,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab158

Amyotrophic lateral sclerosis (ALS) is a debilitating, fatal neurodegenerative disease that causes rapid muscle wasting. It shares a spectrum of symptoms and pathology with frontotemporal lobar degeneration (FTLD). These diseases are caused by aberrant activity of a set of proteins including TDP-43 and UBIQUILIN-2 (UBQLN2). UBQLN2 encodes a ubiquitin-like adaptor protein involved in the ubiquitin-proteasome protein degradation pathway. Mutations in the PXX domain of UBQLN2 cause familial ALS. UBQLN2 aggregates in skein-like inclusions with other ALS and FTLD associated proteins including TDP-43 and ubiquitin. To facilitate further investigation of UBQLN2-mediated mechanisms of neurodegeneration, we made Caenorhabditis elegans transgenic lines pan-neuronally expressing human UBQLN2 cDNAs carrying either the wild-type UBQLN2 sequence or UBQLN2 with ALS causing mutations. Transgenic animals exhibit motor dysfunction accompanied by neurodegeneration of GABAergic motor neurons. At low levels of UBQLN2 expression, wild-type UBQLN2 causes significant motor impairment and neurodegeneration that is exacerbated by ALS associated mutations in UBQLN2. At higher levels of UBQLN2 expression, both wild-type and ALS mutated versions of UBQLN2 cause severe impairment. Molecular genetic investigation revealed that UBQLN2 dependent locomotor defects do not require the involvement of the endogenous homolog of TDP-43 in C. elegans (tdp-1). However, co-expression of wild-type human TDP-43 exacerbates UBQLN2 deficits. This model of UBQLN2-mediated neurodegeneration may be useful for further mechanistic investigation into the molecular cascades driving neurodegeneration in ALS and ALS-FTLD.
Héloïse Muller, David Ogereau, Jean-Luc Da Lage, Claire Capdevielle, Nicolas Pollet, Taiadjana Fortuna, Rémi Jeannette, Laure Kaiser,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab155

The Mediterranean corn borer (Sesamia nonagrioides, Noctuidae, Lepidoptera) is a major pest of maize in Europe and Africa. Here, we report an assembly of the nuclear and mitochondrial genome of a pool of inbred males and females third-instar larvae, based on short- and long-read sequencing. The complete mitochondrial genome is 15,330 bp and contains all expected 13 and 24 protein-coding and RNA genes, respectively. The nuclear assembly is 1021 Mb, composed of 2553 scaffolds and it has an N50 of 1105 kb. It is more than twice larger than that of all Noctuidae species sequenced to date, mainly due to a higher repeat content. A total of 17,230 protein-coding genes were predicted, including 15,776 with InterPro domains. We provide detailed annotation of genes involved in sex determination (doublesex, insulin-like growth factor 2 mRNA-binding protein, and P-element somatic inhibitor) and of alpha-amylase genes possibly involved in interaction with parasitoid wasps. We found no evidence of recent horizontal transfer of bracovirus genes from parasitoid wasps. These genome assemblies provide a solid molecular basis to study insect genome evolution and to further develop biocontrol strategies against S. nonagrioides.
, Victoria Offord, Gemma Turner, Agnes Swiatkowska, Anneliese O Speak, David J Adams
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab157

Metastasis is the spread of cancer cells to a secondary site within the body, and is the leading cause of death for cancer patients. The lung is a common site of metastasis for many cancer types, including melanoma. Identifying the genes involved in aiding metastasis of melanoma cells to the lungs is critical for the development of better treatments. As the accessibility of cell surface proteins makes them attractive therapeutic targets, we performed a CRISPR activation screen using a library of guide RNAs (gRNAs) targeting the transcription start sites of 2195 membrane protein-encoding genes, to identify genes whose upregulated expression aided pulmonary metastasis. Immunodeficient mice were subcutaneously injected in the flank with murine B16-F0 melanoma cells expressing dCas9 and the membrane protein library gRNAs, and their lungs collected after 14–21 days. Analysis was performed to identify the gRNAs that were enriched in the lungs relative to those present in the cells at the time of administration (day 0). We identified six genes whose increased expression promotes lung metastasis. These genes included several with well-characterized pro-metastatic roles (Fut7, Mgat5, and Pcdh7) that have not previously been linked to melanoma progression, genes linked to tumor progression but that have not previously been described as involved in metastasis (Olfr322 and Olfr441), as well as novel genes (Tmem116). Thus, we have identified genes that, when upregulated in melanoma cells, can aid successful metastasis and colonization of the lung, and therefore may represent novel therapeutic targets to inhibit pulmonary metastasis.
Keisuke Tomita, Yoko Yashiroda, Yasuhiro Matsuo, Jeff S Piotrowski, Sheena C Li, Reika Okamoto, Mami Yoshimura, Hiromi Kimura, Yumi Kawamura, Makoto Kawamukai, et al.
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab156

Momilactone B is a natural product with dual biological activities, including antimicrobial and allelopathic properties, and play a major role in plant chemical defense against competitive plants and pathogens. The pharmacological effects of momilactone B on mammalian cells have also been reported. However, little is known about the molecular and cellular mechanisms underlying its broad bioactivity. In this study, the genetic determinants of momilactone B sensitivity in yeast were explored to gain insight into its mode of action. We screened fission yeast mutants resistant to momilactone B from a pooled culture containing genome-wide gene-overexpressing strains in a drug-hypersensitive genetic background. Overexpression of pmd1, bfr1, pap1, arp9, or SPAC9E9.06c conferred resistance to momilactone B. In addition, a drug-hypersensitive, barcoded deletion library was newly constructed and the genes that imparted altered sensitivity to momilactone B upon deletion were identified. Gene Ontology and fission yeast phenotype ontology enrichment analyses predicted the biological pathways related to the mode of action of momilactone B. The validation of predictions revealed that momilactone B induced abnormal phenotypes such as multiseptated cells and disrupted organization of the microtubule structure. This is the first investigation of the mechanism underlying the antifungal activity of momilactone B against yeast. The results and datasets obtained in this study narrow the possible targets of momilactone B and facilitate further studies regarding its mode of action.
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab151

The spontaneous mutation rate is a very variable trait that is subject to drift, selection and is sometimes highly plastic. Consequently, its variation between close species, or even between populations from the same species, can be very large. Here, I estimated the spontaneous mutation rate of Drosophila pseudoobscura and Drosophila persimilis crosses to explore the mutation rate variation within the Drosophila genus. All mutation rate estimations in Drosophila varied fourfold, probably explained by the sensitivity of the mutation rate to environmental and experimental conditions. Moreover, I found a very high mutation rate in the hybrid cross between D. pseudoobscura and D. persimilis, in agreement with known elevated mutation rate in hybrids. This mutation rate increase can be explained by heterozygosity and fitness decrease effects in hybrids.
, Zachary Brenton, James Heuser, Stephen Kresovich, Nadia Shakoor, Todd Mockler, Elizabeth A Cooper
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab154

Genomic structural mutations, especially deletions, are an important source of variation in many species and can play key roles in phenotypic diversification and evolution. Previous work in many plant species has identified multiple instances of structural variations (SVs) occurring in or near genes related to stress response and disease resistance, suggesting a possible role for SVs in local adaptation. Sorghum (Sorghum bicolor (L.) Moench) is one of the most widely grown cereal crops in the world. It has been adapted to an array of different climates as well as bred for multiple purposes, resulting in a striking phenotypic diversity. In this study, we identified genome-wide SVs in the Biomass Association Panel, a collection of 347 diverse sorghum genotypes collected from multiple countries and continents. Using Illumina-based, short-read whole genome resequencing data from every genotype, we found a total of 24,648 SVs, including 22,359 deletions. The global site frequency spectrum of deletions and other types of SVs fit a model of neutral evolution, suggesting that the majority of these mutations were not under any types of selection. Clustering results based on single nucleotide polymorphisms separated the genotypes into eight clusters which largely corresponded with geographic origins, with many of the large deletions we uncovered being unique to a single cluster. Even though most deletions appeared to be neutral, a handful of cluster-specific deletions were found in genes related to biotic and abiotic stress responses, supporting the possibility that at least some of these deletions contribute to local adaptation in sorghum.
, Dean Podlich,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab153

Commercial hybrid breeding operations can be described as decentralized networks of smaller, more or less isolated breeding programs. There is further a tendency for the disproportionate use of successful inbred lines for generating the next generation of recombinants, which has led to a series of significant bottlenecks, particularly in the history of the North American and European maize germplasm. Both the decentralization and the disproportionate contribution of inbred lines reduce effective population size and constrain the accessible genetic space. Under these conditions, long-term response to selection is not expected to be optimal under the classical infinitesimal model of quantitative genetics. In this study, we therefore aim to propose a rationale for the success of large breeding operations in the context of genetic complexity arising from the structure and properties of interactive genetic networks. For this, we use simulations based on the NK model of genetic architecture. We indeed found that constraining genetic space through program decentralization and disproportionate contribution of parental inbred lines, is required to expose additive genetic variation and thus facilitate heritable genetic gains under high levels of genetic complexity. These results introduce new insights into why the historically grown structure of hybrid breeding programs was successful in improving the yield potential of hybrid crops over the last century. We also hope that a renewed appreciation for “why things worked” in the past can guide the adoption of novel technologies and the design of future breeding strategies for navigating biological complexity.
Biao Xuan, Jongbin Park, SukJung Choi, Inhwan You, Bo-Hye Nam, Eun Soo Noh, Eun Mi Kim, Mi-Young Song, Younhee Shin, Ji-Hyeon Jeon
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab147

Pond smelt (Hypomesus nipponensis) is a cold-freshwater fish species as a winter economic resource of aquaculture in South Korea. Due to its high susceptibility to abnormal water temperature from global warming, a large number of smelt die in hot summer. Here, we present the first draft genome of H. nipponensis and transcriptomic changes in molecular mechanisms or intracellular responses under heat stress. We combined Illumina and PacBio sequencing technologies to generate the draft genome of H. nipponensis. Based on the reference genome, we conducted transcriptome analysis of liver and muscle tissues under normal (NT, 5 °C) versus warm (HT, 23 °C) conditions, to identify heat stress-induced genes and gene categories. We observed a total of 1,987 contigs, with N50 of 0.46 Mbp with a largest contig (3.03 Mbp) in the assembled genome. A total number of 20,644 protein coding genes were predicted, and 19,224 genes were functionally annotated: 15,955 genes for Gene Ontology (GO) terms; and 11,560 genes for KEGG Orthology (KO). We conducted the lost and gained genes analysis compared with three species that human, zebrafish and salmon. In the lost genes analysis, we detected smelt lost 4,461 (22.16%), 2,825 (10.62%), and 1,499 (3.09%) genes compare with above three species, respectively. In the gained genes analysis, we observed smelt gain 1,133 (5.49%), 1,670 (8.09%), and 229 (1.11%) genes compare with above species, respectively. From transcriptome analysis, a total of 297 and 331 differentially expressed genes (DEGs) with False discovery rate (FDR) < 0.05 were identified in the liver and muscle tissues, respectively. Gene enrichment analysis of DEGs indicates that up-regulated genes were significantly enriched for lipid biosynthetic process (GO : 0008610, P < 0.001) and regulation of apoptotic process (GO : 0042981, P < 0.01), and down-regulated genes by immune responses such as myeloid cell differentiation (GO : 0030099, P < 0.001) in the liver under heat stress. In muscle tissue, up-regulated genes were enriched for hypoxia (GO : 0001666, P < 0.05), transcription regulator activity (GO : 0140110, P < 0.001) and calcium-release channel activity (GO : 0015278, P < 0.01), and down-regulated genes for nicotinamide nucleotide biosynthetic process (GO : 0019359, P < 0.01). The results of KEGG pathway analysis were similar to that of gene enrichment analysis. The draft genome and transcriptomic of H. nipponensis will be used as a useful genetic resource for functional and evolutionary studies. Our findings will improve understanding of the molecular mechanisms and heat responses and will be useful for predicting survival of the smelt and its closely related species under global warming.
Thomas W R Harrop, Joseph Guhlin, Gemma M McLaughlin, Elizabeth Permina, Peter Stockwell, Josh Gilligan, Marissa F Le Lec, Monica A M Gruber, Oliver Quinn, Mackenzie Lovegrove, et al.
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab109

In the originally published version of this manuscript, funding information and disclosures were omitted. The following information should have been included after the Acknowledgments section.
Elizabeth Popowski, Susan J Thomson, Mareike Knäbel, Jibran Tahir, Ross N Crowhurst, Marcus Davy, Toshi M Foster, Robert J Schaffer, D Stuart Tustin, Andrew C Allan, et al.
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab142

Commercially grown kiwifruit (genus Actinidia) are generally of two sub-species which have a base haploid genome of 29 chromosomes. The yellow-fleshed Actinidia chinensis var. chinensis, is either diploid (2n = 2x = 58) or tetraploid (2n = 4x = 116) and the green-fleshed cultivar A. chinensis var. deliciosa “Hayward,” is hexaploid (2n = 6x = 174). Advances in breeding green kiwifruit could be greatly sped up by the use of molecular resources for more efficient and faster selection, for example using marker-assisted selection (MAS). The key genetic marker that has been implemented for MAS in hexaploid kiwifruit is for gender testing. The limited marker-trait association has been reported for other polyploid kiwifruit for fruit and production traits. We have constructed a high-density linkage map for hexaploid green kiwifruit using genotyping-by-sequence (GBS). The linkage map obtained consists of 3686 and 3940 markers organized in 183 and 176 linkage groups for the female and male parents, respectively. Both parental linkage maps are co-linear with the A. chinensis “Red5” reference genome of kiwifruit. The linkage map was then used for quantitative trait locus (QTL) mapping, and successfully identified QTLs for king flower number, fruit number and weight, dry matter accumulation, and storage firmness. These are the first QTLs to be reported and discovered for complex traits in hexaploid kiwifruit.
Roland Chanet, Dorothée Baïlle, Marie-Pierre Golinelli-Cohen, Sylvie Riquier, Olivier Guittet, Michel Lepoivre, Meng-Er Huang,
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab124

B-type eukaryotic polymerases contain a [4Fe-4S] cluster in their C-terminus domain, whose role is not fully understood yet. Among them, DNA polymerase delta (Polδ) plays an essential role in chromosomal DNA replication, mostly during lagging strand synthesis. Previous in vitro work suggested that the Fe-S cluster in Polδ is required for efficient binding of the Pol31 subunit, ensuring stability of the Polδ complex. Here, we analyzed the in vivo consequences resulting from an impaired coordination of the Fe-S cluster in Polδ. We show that a single substitution of the very last cysteine coordinating the cluster by a serine is responsible for the generation of massive DNA damage during S phase, leading to checkpoint activation, requirement of homologous recombination for repair, and ultimately to cell death when the repair capacities of the cells are overwhelmed. These data indicate that impaired Fe-S cluster coordination in Polδ is responsible for aberrant replication. More generally, Fe-S in Polδ may be compromised by various stress including anti-cancer drugs. Possible in vivo Polδ Fe-S cluster oxidation and collapse may thus occur, and we speculate this could contribute to induced genomic instability and cell death, comparable to that observed in pol3-13 cells.
, Francois Olivier Hebert, J Spencer Johnston, Richard Hamelin, Michel Cusson, Roger Levesque, Dawn E Gundersen-Rindal
G3 Genes|Genomes|Genetics; doi:10.1093/g3journal/jkab150

The European gypsy moth, Lymantria dispar dispar (LDD), is an invasive insect and a threat to urban trees, forests and forest-related industries in North America. For use as a comparator with a previously published genome based on the LD652 pupal ovary-derived cell line, as well as whole-insect genome sequences obtained from the Asian gypsy moth subspecies L. dispar asiatica and L. dispar japonica, the whole-insect LDD genome was sequenced, assembled and annotated. The resulting assembly was 998 Mb in size, with a contig N50 of 662 Kb and GC content of 38.8%. Long interspersed nuclear elements (LINEs) constitute 25.4% of the whole-insect genome, and a total of 11,901 genes predicted by automated gene finding encoded proteins exhibiting homology with reference sequences in the NCBI NR and/or UniProtKB databases at the most stringent similarity cutoff level (i.e., the gold tier). These results will be especially useful in developing a better understanding of the biology and population genetics of L. dispar and the genetic features underlying Lepidoptera in general.
Page of 63
Articles per Page
Show export options
  Select all
Back to Top Top