Results in Journal Science: 284,122
(searched for: journal_id:(3613))
Science, Volume 371, pp 276-280; doi:10.1126/science.abf3013
The publisher has not yet granted permission to display this abstract.
Science; doi:10.1126/science.abg5470
Science; doi:10.1126/science.abg5646
Science; doi:10.1126/science.abg5607
Science; doi:10.1126/science.abg5651
Science; doi:10.1126/science.abg5606
Science; doi:10.1126/science.abg5622
Science; doi:10.1126/science.abg5655
Science; doi:10.1126/science.abg5458
Science; doi:10.1126/science.abe6230
Abstract:
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread with devastating consequences. For passive immunization efforts, nanobodies have size and cost advantages over conventional antibodies. Here, we generated four neutralizing nanobodies that target the receptor-binding domain of the SARS-CoV-2 spike protein. We defined two distinct binding epitopes using x-ray crystallography and cryo-electron microscopy. Based on the structures, we engineered multivalent nanobodies with more than 100-fold improved neutralizing activity than monovalent nanobodies. Biparatopic nanobody fusions suppressed the emergence of escape mutants. Several nanobody constructs neutralized through receptor-binding competition, while other monovalent and biparatopic nanobodies triggered aberrant activation of the spike fusion machinery. These premature conformational changes in the spike protein forestalled productive fusion, and rendered the virions non-infectious.
Science; doi:10.1126/science.abe6522
Abstract:
We are currently faced with the question of how the CoV-2 severity may change in the years ahead. Our analysis of immunological and epidemiological data on endemic human coronaviruses (HCoVs) shows that infection-blocking immunity wanes rapidly, but disease-reducing immunity is long-lived. Our model, incorporating these components of immunity, recapitulates both the current severity of CoV-2 and the benign nature of HCoVs, suggesting that once the endemic phase is reached and primary exposure is in childhood, CoV-2 may be no more virulent than the common cold. We predict a different outcome for an emergent coronavirus that causes severe disease in children. These results reinforce the importance of behavioral containment during pandemic vaccine rollout, while prompting us to evaluate scenarios for continuing vaccination in the endemic phase.
Science; doi:10.1126/science.abg5287
Science; doi:10.1126/science.abg5439
Science; doi:10.1126/science.abg5452
Science; doi:10.1126/science.abg5483
Science; doi:10.1126/science.abg5254
Science; doi:10.1126/science.abg5239
Science; doi:10.1126/science.caredit.abg5262
Science; doi:10.1126/science.abg5282
Science; doi:10.1126/science.abg4932
Science; doi:10.1126/science.abg4914
Science; doi:10.1126/science.abf2946
Abstract:
The UK’s COVID-19 epidemic during early 2020 was one of world’s largest and unusually well represented by virus genomic sampling. Here we reveal the fine-scale genetic lineage structure of this epidemic through analysis of 50,887 SARS-CoV-2 genomes, including 26,181 from the UK sampled throughout the country’s first wave of infection. Using large-scale phylogenetic analyses, combined with epidemiological and travel data, we quantify the size, spatio-temporal origins and persistence of genetically-distinct UK transmission lineages. Rapid fluctuations in virus importation rates resulted in >1000 lineages; those introduced prior to national lockdown tended to be larger and more dispersed. Lineage importation and regional lineage diversity declined after lockdown, while lineage elimination was size-dependent. We discuss the implications of our genetic perspective on transmission dynamics for COVID-19 epidemiology and control.
Science, Volume 371, pp 138.3-139; doi:10.1126/science.371.6525.138-c
Science, Volume 371, pp 137.11-139; doi:10.1126/science.371.6525.137-k
Science, Volume 371, pp 110-111; doi:10.1126/science.371.6525.110
Science, Volume 371, pp 138.4-139; doi:10.1126/science.371.6525.138-d
Science, Volume 371, pp 131-131; doi:10.1126/science.abf3679
Science, Volume 371, pp 106-107; doi:10.1126/science.371.6525.106
Science, Volume 371, pp 164-167; doi:10.1126/science.abc8116
The publisher has not yet granted permission to display this abstract.
Science, Volume 371, pp 206-206; doi:10.1126/science.371.6525.206
Science, Volume 371, pp 105-105; doi:10.1126/science.abg3779
Science, Volume 371, pp 116-119; doi:10.1126/science.371.6525.116
Science, Volume 371, pp 138.7-139; doi:10.1126/science.371.6525.138-g
Science, Volume 371, pp 125-125; doi:10.1126/science.abf5591
Science, Volume 371, pp 137.5-138; doi:10.1126/science.371.6525.137-e
Science, Volume 371, pp 138.2-138; doi:10.1126/science.371.6525.138-b
Science, Volume 371, pp 111-112; doi:10.1126/science.371.6525.111
Science, Volume 371, pp 201-201; doi:10.1126/science.371.6525.201
Science, Volume 371, pp 133.2-134; doi:10.1126/science.abf4286
Science; doi:10.1126/science.abg4703
Science; doi:10.1126/science.abg4088
Science; doi:10.1126/science.abg4684
Science; doi:10.1126/science.abg2842
Science, Volume 371, pp 120-122; doi:10.1126/science.abf6097
Science; doi:10.1126/science.abb2986
The publisher has not yet granted permission to display this abstract.
Science, Volume 371, pp 109-110; doi:10.1126/science.371.6525.109
Science, Volume 371, pp 132-132; doi:10.1126/science.abf0570
Science, Volume 371, pp 194-200; doi:10.1126/science.abc0476
The publisher has not yet granted permission to display this abstract.
Science, Volume 371, pp 137.15-139; doi:10.1126/science.371.6525.137-o
Science, Volume 371, pp 108-109; doi:10.1126/science.371.6525.108