Refine Search

New Search

Results in Journal Science: 284,122

(searched for: journal_id:(3613))
Page of 5,683
Articles per Page
Show export options
  Select all
Bipin K. Pandey , Guoqiang Huang , Rahul Bhosale, Sjon Hartman , Craig J. Sturrock , Lottie Jose, Olivier C. Martin , Michal Karady , Laurentius A. C. J. Voesenek, Karin Ljung , et al.
Science, Volume 371, pp 276-280; doi:10.1126/science.abf3013

The publisher has not yet granted permission to display this abstract.
Paul-Albert Koenig , Hrishikesh Das, Hejun Liu, Beate M. Kümmerer, Florian N. Gohr, Lea-Marie Jenster, Lisa D. J. Schiffelers, Yonas M. Tesfamariam, Miki Uchima, Jennifer D. Wuerth , et al.
Science; doi:10.1126/science.abe6230

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread with devastating consequences. For passive immunization efforts, nanobodies have size and cost advantages over conventional antibodies. Here, we generated four neutralizing nanobodies that target the receptor-binding domain of the SARS-CoV-2 spike protein. We defined two distinct binding epitopes using x-ray crystallography and cryo-electron microscopy. Based on the structures, we engineered multivalent nanobodies with more than 100-fold improved neutralizing activity than monovalent nanobodies. Biparatopic nanobody fusions suppressed the emergence of escape mutants. Several nanobody constructs neutralized through receptor-binding competition, while other monovalent and biparatopic nanobodies triggered aberrant activation of the spike fusion machinery. These premature conformational changes in the spike protein forestalled productive fusion, and rendered the virions non-infectious.
Jennie S. LaVine, Ottar N. Bjornstad , Rustom Antia
Science; doi:10.1126/science.abe6522

We are currently faced with the question of how the CoV-2 severity may change in the years ahead. Our analysis of immunological and epidemiological data on endemic human coronaviruses (HCoVs) shows that infection-blocking immunity wanes rapidly, but disease-reducing immunity is long-lived. Our model, incorporating these components of immunity, recapitulates both the current severity of CoV-2 and the benign nature of HCoVs, suggesting that once the endemic phase is reached and primary exposure is in childhood, CoV-2 may be no more virulent than the common cold. We predict a different outcome for an emergent coronavirus that causes severe disease in children. These results reinforce the importance of behavioral containment during pandemic vaccine rollout, while prompting us to evaluate scenarios for continuing vaccination in the endemic phase.
Science; doi:10.1126/science.abf2946

The UK’s COVID-19 epidemic during early 2020 was one of world’s largest and unusually well represented by virus genomic sampling. Here we reveal the fine-scale genetic lineage structure of this epidemic through analysis of 50,887 SARS-CoV-2 genomes, including 26,181 from the UK sampled throughout the country’s first wave of infection. Using large-scale phylogenetic analyses, combined with epidemiological and travel data, we quantify the size, spatio-temporal origins and persistence of genetically-distinct UK transmission lineages. Rapid fluctuations in virus importation rates resulted in >1000 lineages; those introduced prior to national lockdown tended to be larger and more dispersed. Lineage importation and regional lineage diversity declined after lockdown, while lineage elimination was size-dependent. We discuss the implications of our genetic perspective on transmission dynamics for COVID-19 epidemiology and control.
Melissa McCartney
Science, Volume 371, pp 138.3-139; doi:10.1126/science.371.6525.138-c

Priscilla N. Kelly
Science, Volume 371, pp 137.11-139; doi:10.1126/science.371.6525.137-k

Nicholas Wallace
Science, Volume 371, pp 110-111; doi:10.1126/science.371.6525.110

Caroline Ash
Science, Volume 371, pp 138.4-139; doi:10.1126/science.371.6525.138-d

Kathy Hirsh-Pasek
Science, Volume 371, pp 131-131; doi:10.1126/science.abf3679

Science, Volume 371, pp 106-107; doi:10.1126/science.371.6525.106

Science, Volume 371, pp 164-167; doi:10.1126/science.abc8116

The publisher has not yet granted permission to display this abstract.
Science, Volume 371, pp 206-206; doi:10.1126/science.371.6525.206

Sethuraman Panchanathan
Science, Volume 371, pp 105-105; doi:10.1126/science.abg3779

Adrian Cho
Science, Volume 371, pp 116-119; doi:10.1126/science.371.6525.116

Yury Suleymanov
Science, Volume 371, pp 138.7-139; doi:10.1126/science.371.6525.138-g

Wolfgang Busch, Joanne Chory
Science, Volume 371, pp 125-125; doi:10.1126/science.abf5591

Priscilla N. Kelly
Science, Volume 371, pp 137.5-138; doi:10.1126/science.371.6525.137-e

Valda Vinson
Science, Volume 371, pp 138.2-138; doi:10.1126/science.371.6525.138-b

Gabriel Popkin
Science, Volume 371, pp 111-112; doi:10.1126/science.371.6525.111

Science, Volume 371, pp 201-201; doi:10.1126/science.371.6525.201

Edward S. Dove , Jiahong Chen, Nóra Ni Loideain
Science, Volume 371, pp 133.2-134; doi:10.1126/science.abf4286

Richard C. V. Tyser, Ximena Ibarra-Soria , Katie McDole, Satish A. Jayaram, Jonathan Godwin , Teun Van Den Brand , Antonio M. A. Miranda, Antonio Scialdone , Philipp J. Keller , John C. Marioni , et al.
Science; doi:10.1126/science.abb2986

The publisher has not yet granted permission to display this abstract.
Jon Cohen
Science, Volume 371, pp 109-110; doi:10.1126/science.371.6525.109

Deborah P. Dixon
Science, Volume 371, pp 132-132; doi:10.1126/science.abf0570

Scott B. Biering , David L. Akey, Marcus P. Wong, W. Clay Brown, Nicholas T. N. Lo, Henry Puerta-Guardo, Francielle Tramontini Gomes De Sousa, Chunling Wang, Jamie R. Konwerski, Diego A. Espinosa , et al.
Science, Volume 371, pp 194-200; doi:10.1126/science.abc0476

The publisher has not yet granted permission to display this abstract.
Caroline Ash
Science, Volume 371, pp 137.15-139; doi:10.1126/science.371.6525.137-o

Kai Kupferschmidt
Science, Volume 371, pp 108-109; doi:10.1126/science.371.6525.108

Page of 5,683
Articles per Page
Show export options
  Select all
Back to Top Top