Refine Search

New Search

Results: 2

(searched for: doi:10.3390/molecules27072136)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Saoussan Annemer, Yassine Ez Zoubi, Badr Satrani, Hamide Stambouli, Amine Assouguem, Taoufik Bouayoun,
Published: 3 November 2022
Abstract:
Chemical fungicides are often harmful to people and the environment because of their toxicity. The wood protection industry places a high priority on replacing them with natural products. Therefore, this investigation focused on developing a formulation of a binary combination of Salvia rosmarinus Spenn and Cedrus atlantica Manetti obtained by Simultaneous hydrodistillation to protect the wood from decay using a mixture design methodology. The chemical composition of EOs was identified by Gas chromatography coupled with mass spectrometry (GC/MS), and their anti-wood-decay fungal activity was assessed using the macrodilution method against four fungi responsible for wood decay: Coniophora puteana, Coriolus versicolor, Gloeophyllum trabeum, and Poria placenta. The results of GC/MS identified myrtenal as a new component appearing in all binary combinations. The optimum anti-wood-decay fungal activity was observed in a combination of 60% S. rosmarinus and 40% C. atlantica essential oils, providing an effective concentration for 50 percent of maximal effect (EC50) value of 9.91 ± 1.91 and 9.28 ± 1.55 µg/mL for C. puteana and C. versicolor, respectively. The highest anti-wood-decay fungal activity for G. trabeum and P. placenta was found in the combination of 55% of S. rosmarinus and 45% of C. atlantica essential oils, with an EC50 value of 11.48 ± 3.73 and 22.619 ± 3.79 µg/mL, respectively. Combined simultaneous hydrodistillation improved the antifungal effect of these essential oils. These results could be used to improve antifungal activity and protect wood against wood-decay fungi.
Published: 22 July 2022
by MDPI
Journal: Journal of Fungi
Journal of Fungi, Volume 8; https://doi.org/10.3390/jof8080762

Abstract:
Control of fungal phytopathogens affecting crops and woodlands is an important goal in environmental management and the maintenance of food security. This work describes the synthesis of 37 camphor derivatives, of which 27 were new compounds. Their antifungal effects on six fungi were evaluated in vitro. Compounds 3a, 4a and 5k showed strong antifungal activity against Trametes versicolor, with EC50 values of 0.43, 6.80 and 4.86 mg/L, respectively, which were better than that of tricyclazole (EC50 118.20 mg/L) and close to or better than that of carbendazim (EC50 1.20 mg/L). The most potent compound, 3a, exhibited broad-spectrum antifungal activity towards six fungi with EC50 values within the range of 0.43–40.18 mg/L. Scanning electron microscopy demonstrated that compounds 3a, 4a and 5k gave irregular growth and shriveling of the mycelia. In vitro cytotoxicity evaluation revealed that the tested camphor derivatives had mild or no cytotoxicity for LO2 and HEK293T cell lines. Quantitative structure−activity relationship (QSAR) analysis revealed that the number of F atoms, relative molecular weight, the atomic orbital electronic population and total charge on the positively charged surfaces of the molecules of camphor derivatives have effects on antifungal activity. The present study may provide a theoretical basis for a high-value use of camphor and could be helpful for the development of novel potential antifungals.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top