Refine Search

New Search

Results: 17

(searched for: doi:10.1038/s41591-021-01397-4)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Zhiliang Hu, Bilin Tao, Zhongqi Li, Yan Song, Changhua Yi, Junwei Li, Meng Zhu, Yongxiang Yi, , Jianming Wang
Published: 5 September 2021
Abstract:
The SARS-CoV-2 B.1.617.2 (Delta) variant has caused a new surge in the number of COVID-19 cases. The effectiveness of vaccines against this variant is not fully understood. Using data from a recent large-scale outbreak of COVID-19 in China, we conducted a real-world study to explore the effect of inactivated vaccine immunization on the course of disease in patients infected with Delta variants. We recruited 476 confirmed cases over the age of 18, of which 42 were severe. After adjusting for age, gender, and comorbidities, patients who received two doses of inactivated vaccine (fully vaccinated) had an 88% reduced risk in progressing to the severe stage (adjusted OR: 0.12, 95% CI: 0.02- 0.45). However, this protective effect was not observed in patients who only received only one dose of the vaccine(adjusted OR: 1.11, 95% CI: 0.51- 2.36). The full immunization offered 100% protection from a severe illness among women. The effect of the vaccine was potentially affected by underlying medical conditions (OR: 0.26, 95% CI: 0.03-1.23). This is the largest real-world study confirming the effectiveness of inactive COVID-19 vaccines against severe illness in Delta variant-infected patients in Jiangsu, China.
, Jan Wohlfahrt, Morten Rasmussen, Mads Albertsen, Tyra Grove Krause
Published: 3 September 2021
The Lancet Infectious Diseases, Volume 21; https://doi.org/10.1016/s1473-3099(21)00580-6

Abstract:
The SARS-CoV-2 B.1.617.2 (delta) variant was first reported in India in December, 2020, and by July, 2021, was predominant over the B.1.1.7 (alpha) variant in most of Europe due to its higher transmissibility.1Singh J Rahman SA Ehtesham NZ Hira S Hasnain SE SARS-CoV-2 variants of concern are emerging in India.Nat Med. 2021; 27: 1131-1133Crossref PubMed Scopus (10) Google Scholar, 2Twohig KA Nyberg T Zaidi A et al.Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study.Lancet Infect Dis. 2021; (published online Aug 27.)https://doi.org/10.1016/S1473-3099(21)00475-8Summary Full Text Full Text PDF PubMed Google Scholar Infections with the alpha variant have been shown to be more severe than preceding SARS-CoV-2 strains,3Nyberg T Twohig KA Harris RJ et al.Risk of hospital admission for patients with SARS-CoV-2 variant B.1.1.7: cohort analysis.BMJ. 2021; 373n1412Crossref PubMed Google Scholar, 4Bager P Wohlfahrt J Fonager J et al.Risk of hospitalisation associated with infection with SARS-CoV-2 lineage B.1.1.7 in Denmark: an observational cohort study.Lancet Infect Dis. 2021; (published online June 22.)https://doi.org/10.1016/S1473-3099(21)00290-5Summary Full Text Full Text PDF PubMed Google Scholar and a similar concern has now been raised for infections with the delta variant, particularly among unvaccinated people, although vaccination is effective against COVID-19 hospitalisation.
Published: 27 August 2021
The Lancet Infectious Diseases; https://doi.org/10.1016/s1473-3099(21)00475-8

Abstract:
Summary Background The SARS-CoV-2 delta (B.1.617.2) variant was first detected in England in March, 2021. It has since rapidly become the predominant lineage, owing to high transmissibility. It is suspected that the delta variant is associated with more severe disease than the previously dominant alpha (B.1.1.7) variant. We aimed to characterise the severity of the delta variant compared with the alpha variant by determining the relative risk of hospital attendance outcomes. Methods This cohort study was done among all patients with COVID-19 in England between March 29 and May 23, 2021, who were identified as being infected with either the alpha or delta SARS-CoV-2 variant through whole-genome sequencing. Individual-level data on these patients were linked to routine health-care datasets on vaccination, emergency care attendance, hospital admission, and mortality (data from Public Health England's Second Generation Surveillance System and COVID-19-associated deaths dataset; the National Immunisation Management System; and NHS Digital Secondary Uses Services and Emergency Care Data Set). The risk for hospital admission and emergency care attendance were compared between patients with sequencing-confirmed delta and alpha variants for the whole cohort and by vaccination status subgroups. Stratified Cox regression was used to adjust for age, sex, ethnicity, deprivation, recent international travel, area of residence, calendar week, and vaccination status. Findings Individual-level data on 43 338 COVID-19-positive patients (8682 with the delta variant, 34 656 with the alpha variant; median age 31 years [IQR 17–43]) were included in our analysis. 196 (2·3%) patients with the delta variant versus 764 (2·2%) patients with the alpha variant were admitted to hospital within 14 days after the specimen was taken (adjusted hazard ratio [HR] 2·26 [95% CI 1·32–3·89]). 498 (5·7%) patients with the delta variant versus 1448 (4·2%) patients with the alpha variant were admitted to hospital or attended emergency care within 14 days (adjusted HR 1·45 [1·08–1·95]). Most patients were unvaccinated (32 078 [74·0%] across both groups). The HRs for vaccinated patients with the delta variant versus the alpha variant (adjusted HR for hospital admission 1·94 [95% CI 0·47–8·05] and for hospital admission or emergency care attendance 1·58 [0·69–3·61]) were similar to the HRs for unvaccinated patients (2·32 [1·29–4·16] and 1·43 [1·04–1·97]; p=0·82 for both) but the precision for the vaccinated subgroup was low. Interpretation This large national study found a higher hospital admission or emergency care attendance risk for patients with COVID-19 infected with the delta variant compared with the alpha variant. Results suggest that outbreaks of the delta variant in unvaccinated populations might lead to a greater burden on health-care services than the alpha variant. Funding Medical Research Council; UK Research and Innovation; Department of Health and Social Care; and National Institute for Health Research.
Nilesh Joshi, ,
Published: 17 August 2021
ChemistrySelect, Volume 6, pp 7981-7998; https://doi.org/10.1002/slct.202102074

Abstract:
SARS-CoV-2 virus during its spread in the last one and half year has picked up critical changes in its genetic code i.e. mutations, which have leads to deleterious epidemiological characteristics. Due to critical role of spike protein in cell entry and pathogenesis, mutations in spike regions have been reported to enhance transmissibility, disease severity, possible escape from vaccine-induced immune response and reduced diagnostic sensitivity/specificity. Considering the structure-function impact of mutations, understanding the molecular details of these key mutations of newly emerged variants/lineages is of urgent concern. In this review, we have explored the literature on key spike mutations harbored by alpha, beta, gamma and delta ‘variants of concern’ (VOCs) and discussed their molecular consequences in the context of resultant virus biology. Commonly all these VOCs i.e. B.1.1.7, B.1.351, P.1 and B.1.617.2 lineages have decisive mutation in Receptor Binding Motif (RBM) region and/or region around Furin cleavage site (FCS) of spike protein. In general, mutation induced disruption of intra-molecular interaction enhances molecular flexibility leading to exposure of spike protein surface in these lineages to make it accessible for inter-molecular interaction with hACE2. A disruption of spike antigen-antibody inter-molecular interactions in epitope region due to the chemical nature of substituting amino acid hampers the neutralization efficacy. Simplified surveillance of mutation induced changes and their consequences at molecular level can contribute in rationalizing mutation‘s impact on virus biology. It is believed that molecular level dissection of these key spike mutation will assist the future investigations for a more resilient outcome against severity of COVID-19.
Mario Cazzola, , Filomena Mazzeo, Maria Gabriella Matera
Abstract:
The Sputnik V COVID-19 vaccine is a member of the so-called vector vaccines and uses two different vectors (Ad26 priming and Ad5 boost) to reduce the risk of a reduction in the effectiveness of the vaccination. Real life data indicate an efficacy of the vaccine above 97%. Low cost and no need for ultra-cold storage temperature temperatures are other pluses of the Sputnik V vaccine. However, there are also several important shortcomings that must be considered such as the possible reduction of its immunogenicity in the presence of very high Ad5 neutralizing antibody titres and the decrease with age of the antibody titres neutralizing the virus. Furthermore, there is emerging documentation that Sputnik V has a reduced neutralizing capacity against the Beta variant and all variants with the spike protein carrying the E484K substitution. Nevertheless, due to its characteristics, Sputnik V could be another useful means of satisfying the need for mass vaccination. However, it is imperative to document the efficacy and safety of the Sputnik V vaccine in individuals with high pre-existing anti-Ad26 and Ad5-neutralizing antibody titres and in those under the age of 18 or older than 60 years and be certain that Sputnik V does not cause the rare development of immune thrombotic thrombocytopenia. It is hoped that the now widespread use of this vaccine will generate a large pragmatic real-world study with data accessible to anyone interested in verifying them.
, Erica T. Prates, Jonathon Romero, Ashley Cliff, Joao Gabriel Felipe Machado Gazolla, Monica Pickholz, Mirko Pavicic,
Published: 8 August 2021
Abstract:
The SARS-CoV-2 pandemic has entered an alarming new phase with the emergence of the variants of concern (VOC), P.1, B.1.351, and B.1.1.7, in late 2020, and B.1.427, B.1.429, and B.1.617, in 2021. Substitutions in the spike glycoprotein (S), such as Asn501Tyr and Glu484Lys, are likely key in several VOC. However, Asn501Tyr circulated for months in earlier strains and Glu484Lys is not found in B.1.1.7, indicating that they do not fully explain those fast-spreading variants. Here we use a computational systems biology approach to process more than 900,000 SARS-CoV-2 genomes, map their spatiotemporal relationships, and identify lineage-defining mutations followed by structural analyses that reveal their critical attributes. Comparisons to earlier dominant mutations and protein structural analyses indicate that increased transmission is promoted by epistasis, i.e., the combination of functionally complementary mutations in S and in other regions of the SARS-CoV-2 proteome. We report that the VOC have in common mutations in non-S proteins involved in immune-antagonism and replication performance, such as the nonstructural proteins 6 and 13, suggesting convergent evolution of the virus. Critically, we propose that recombination events among divergent coinfecting haplotypes greatly accelerates the emergence of VOC by bringing together cooperative mutations and explaining the remarkably high mutation load of B.1.1.7. Therefore, extensive community distribution of SARS-CoV-2 increases the probability of future recombination events, further accelerating the evolution of the virus. This study reinforces the need for a global response to stop COVID-19 and future pandemics. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). ”Nothing in Biology Makes Sense Except in the Light of Evolution” -Theodosius Dobzhansky
Published: 3 August 2021
International Immunopharmacology, Volume 99; https://doi.org/10.1016/j.intimp.2021.108036

Abstract:
Coronavirus disease 2019 (COVID-19) has been declared by the World Health Organization (WHO) as a pandemic since March 2020. This disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The only available tools to avoid contamination and transmission of this virus are physical distancing, the use of N95 and surgical masks, and hand hygiene. Vaccines are another essential tool to reduce the impact of the pandemic, though these present challenges in terms of production and logistics, particularly in underdeveloped and developing countries. One of the critical early research findings is the interaction of the spike virus protein with the angiotensin-converting enzyme 2 (ACE2) human receptor. Developing strategies to block this interaction has therefore been identified as a way to treat this infection. Neutralizing antibodies (nAbs) have emerged as a therapeutic approach since the pandemic started. Infected patients may be asymptomatic or present with mild symptoms, and others may evolve to moderate or severe disease, leading to death. An immunological phenomenon known as cytokine storm has been observed in patients with severe disease characterized by a proinflammatory cytokine cascade response that leads to lung injury. Thus, some treatment strategies focus on anti-cytokine storm nAbs. This review summarizes the latest advances in research and clinical trials, challenges, and perspectives on antibody-based treatments (ABT) as therapies against COVID-19.
Seonghan Kim, Yi Liu, Zewei Lei, Jeffrey Dicker, Yiwei Cao, ,
Published: 26 July 2021
Abstract:
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. It is known that the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 interacts with the human angiotensin-converting enzyme 2 (ACE2) receptor, initiating the entry of SARS-CoV-2. Since its emergence, a number of SARS-CoV-2 variants have been reported, and the variants that show high infectivity are classified as the variants of concern according to the US CDC. In this study, we performed both all-atom steered molecular dynamics (SMD) simulations and microscale thermophoresis (MST) experiments to characterize the binding interactions between ACE2 and RBD of all current variants of concern (Alpha, Beta, Gamma, and Delta) and two variants of interest (Epsilon and Kappa). We report that the RBD of the Alpha (N501Y) variant requires the highest amount of force initially to be detached from ACE2 due to the N501Y mutation in addition to the role of N90-glycan, followed by Beta/Gamma (K417N/T, E484K, and N501Y) or Delta (L452R and T478K) variant. Among all variants investigated in this work, the RBD of the Epsilon (L452R) variant is relatively easily detached from ACE2. Our results combined SMD simulations and MST experiments indicate what makes each variant more contagious in terms of RBD and ACE2 interactions. This study could help develop new drugs to inhibit SARS-CoV-2 entry effectively. Abstract Figure TOC Graphic
Xinhua Chen, Zhiyuan Chen, Andrew S Azman, Ruijia Sun, Wanying Lu, Nan Zheng, Jiaxin Zhou, Qianhui Wu, Xiaowei Deng, Zeyao Zhao, et al.
Clinical Infectious Diseases; https://doi.org/10.1093/cid/ciab646

Abstract:
Recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may pose a threat to immunity. A systematic landscape of neutralizing antibodies against emerging variants is needed. We systematically searched for studies that evaluated neutralizing antibody titers induced by previous infection or vaccination against SARS-CoV-2 variants and collected individual data. We identified 106 studies meeting the eligibility criteria. Lineage B.1.351 (beta), P.1 (gamma) and B.1.617.2 (delta) significantly escaped natural infection–mediated neutralization, with an average of 4.1-fold (95% confidence interval [CI]: 3.6–4.7-fold), 1.8-fold (1.4–2.4-fold), and 3.2-fold (2.4–4.1-fold) reduction in live virus neutralization assay, while neutralizing titers against B.1.1.7 (alpha) decreased slightly (1.4-fold [95% CI: 1.2–1.6-fold]). Serum from vaccinees also led to significant reductions in neutralization of B.1.351 across different platforms, with an average of 7.1-fold (95% CI: 5.5–9.0-fold) for nonreplicating vector platform, 4.1-fold (3.7–4.4-fold) for messenger RNA platform, and 2.5-fold (1.7–2.9-fold) for protein subunit platform. Neutralizing antibody levels induced by messenger RNA vaccines against SARS-CoV-2 variants were similar to, or higher, than that derived from naturally infected individuals.
Published: 22 July 2021
by MDPI
Viruses, Volume 13; https://doi.org/10.3390/v13081421

Abstract:
The ongoing coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most of the currently approved SARS-CoV-2 vaccines use the prototype strain-derived spike (S) protein or its receptor-binding domain (RBD) as the vaccine antigen. The emergence of several novel SARS-CoV-2 variants has raised concerns about potential immune escape. In this study, we performed an immunogenicity comparison of prototype strain-derived RBD, S1, and S ectodomain trimer (S-trimer) antigens and evaluated their induction of neutralizing antibodies against three circulating SARS-CoV-2 variants, including B.1.1.7, B.1.351, and B.1.617.1. We found that, at the same antigen dose, the RBD and S-trimer vaccines were more potent than the S1 vaccine in eliciting long-lasting, high-titer broadly neutralizing antibodies in mice. The RBD immune sera remained highly effective against the B.1.1.7, B.1.351, and B.1.617.1 variants despite the corresponding neutralizing titers decreasing by 1.2-, 2.8-, and 3.5-fold relative to that against the wild-type strain. Significantly, the S-trimer immune sera exhibited comparable neutralization potency (less than twofold variation in neutralizing GMTs) towards the prototype strain and all three variants tested. These findings provide valuable information for further development of recombinant protein-based SARS-CoV-2 vaccines and support the continued use of currently approved SARS-CoV-2 vaccines in the regions/countries where variant viruses circulate.
, , Omar Riffi, Hadj Ahmed Belaouni, Farah Yasmin, Fatma Asma Taouza, Yasmine Belakhdar, Saliha Chiboub Fellah, Amira Yasmine Benmelouka, Shoaib Ahmed, et al.
Published: 22 July 2021
Abstract:
Background The Algerian COVID-19 vaccination campaign, which started by the end of January 2021, is marked by a slowly ascending curve despite the deployed resources. To tackle the issue, we assessed the levels and explored determinants of engagement towards the COVID-19 vaccine among the Algerian population. Methods A nationwide, online-based cross-sectional study was conducted between March 27 and April 30, 2021. A two-stage stratified snowball sampling method was used to include an equivalent number of participants from the four cardinal regions of the country. A vaccine engagement scale was developed, defining vaccine engagement as a multidimensional parameter (5 items) that combined self-stated acceptance and willingness with perceived safety and efficacy of the vaccine. An Engagement score was calculated and the median was used to define engagement versus nonengagement. Sociodemographic and clinical data, perceptions about COVID-19 and levels of adherence to preventive measures were analyzed as predictors for nonengagement. Results We included 1,019 participants, 54% were female and 64% were aged 18-29 years. Overall, there were low rates of self-declared acceptance (26%) and willingness (21%) to take the vaccine, as well as low levels of agreement regarding vaccine safety (21%) and efficacy (30%). Thus, vaccine engagement rate was estimated at 33.5%, and ranged between 29.6-38.5% depending on the region (p>0.05). Nonengagement was independently associated with female gender (OR=2.31, p<0.001), low adherence level to preventive measures (OR=6.93p<0.001), private sector jobs (OR=0.53, p=0.038), perceived COVID-19 severity (OR=0.66, p=0.014), and fear from contracting the disease (OR=0.56, p=0.018). Concern about vaccine side effects (72.0%) and exigence for more efficacy and safety studies (48.3%) were the most commonly reported barrier and enabler for vaccine acceptance respectively; whereas beliefs in the conspiracy theory were reported by 23.4%. Conclusions The very low rates of vaccine engagement among the Algerian population probably explain the slow ascension of the vaccination curve in the country. Vaccine awareness campaigns should be implemented to address the multiple misconceptions and enhance the levels of knowledge and perception both about the disease and the vaccine, by prioritizing target populations and engaging both healthcare workers and the general population.
, , Yanbin Fu, , , Lei Li, Christopher Stamper, Haley Dugan, Molly Accola, William Rehrauer, et al.
Published: 19 July 2021
Abstract:
Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have arisen that exhibit increased viral transmissibility and partial evasion of immunity induced by natural infection and vaccination. To address the specific antibody targets that were affected by recent viral variants, we generated 43 monoclonal antibodies (mAbs) from 10 convalescent donors that bound three distinct domains of the SARS-CoV-2 spike. Viral variants harboring mutations at K417, E484 and N501 could escape most of the highly potent antibodies against the receptor binding domain (RBD). Despite this, we identified 12 neutralizing mAbs against three distinct regions of the spike protein that neutralize SARS-CoV-2 and the variants of concern, including B.1.1.7 (alpha), P.1 (gamma) and B.1.617.2 (delta). Notably, antibodies targeting distinct epitopes could neutralize discrete variants, suggesting different variants may have evolved to disrupt the binding of particular neutralizing antibody classes. These results underscore that humans exposed to wildtype (WT) SARS-CoV-2 do possess neutralizing antibodies against current variants and that it is critical to induce antibodies targeting multiple distinct epitopes of the spike that can neutralize emerging variants of concern.
, Manoj Prashar, Deepak Sharma, Akash, V.Pravin Kumar, T.V.S.V.G.K. Tilak
Diabetes & Metabolic Syndrome: Clinical Research & Reviews, Volume 15, pp 102196-102196; https://doi.org/10.1016/j.dsx.2021.102196

Abstract:
Diabetes Mellitus predisposes patients to invasive fungal infections. There has been a recent surge of Mucormycosis with COVID 19 infection particularly in patients with diabetes. This study aims to study the clinical spectrum of CAM (COVID -associated Mucormycosis) with diabetes and subsequent outcomes. This was a descriptive study conducted at a single COVID Care Centre in India in patients with COVID Associated Mucormycosis from April 12, 2021 to May 31, 2021. Among 953 hospitalized patients with COVID 19 infection, 32 patients had CAM with an incidence of 3.36%. In patients with CAM, 87.5% had Diabetes Mellitus as the most common co-morbidity. The majority of the patients had poor glycemic control with a mean HbA1c of 9.06%. Out of the total study population, 93% had prior exposure to high dose corticosteroids. During the study period, 12.5% patients of CAM did not survive. Mucormycosis is an angioinvasive fungal infection with high mortality. The disease has surged in COVID 19 pandemic due to uncontrolled diabetes and improper corticosteroid use.
Yaniv Lustig, Neta Zuckerman, Ital Nemet, Nofar Atari, Limor Kliker, Gili Regev-Yochay, Einav Sapir, Orna Mor, Sharon Alroy-Preis, Ella Mendelson, et al.
Abstract:
SARS-CoV-2 Delta (B.1.617.2) variant of concern (VOC) and other VOCs are spreading in Europe. Micro-neutralisation assays with sera obtained after Comirnaty (BNT162b2, BioNTech/Pfizer) vaccination in 36 healthcare workers (31 female) demonstrated significant fold change reduction in neutralising titres compared with the original virus: Gamma (P.1) 2.3, Beta (B.1.351) 10.4, Delta 2.1 and 2.6. The reduction of the Alpha (B.1.1.7) variant was not significant. Despite being lower, remaining neutralisation capacity conferred by Comirnaty against Delta and other VOCs is probably protective.
Published: 29 June 2021
One Health, Volume 13, pp 100287-100287; https://doi.org/10.1016/j.onehlt.2021.100287

Abstract:
The worldwide spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the most severe public health crisis since the 1918 Spanish influenza pandemic. After the introduction of public health interventions aimed at reducing the number of COVID-19 cases, many countries across the world obtained success at containing the fast spread of SARS-CoV-2 during the first wave of the pandemic. However, the SARS-CoV-2 has resurged in many countries causing a even more devastating second wave. Brazil is one the most affected countries and currently is facing one of the worst public health crises in its history. Here, we discuss the unprecedented challenges faced by the Brazilian public health system in the midst of the second wave of the COVID-19 pandemic, particularly regarding the collapse of the Brazilian health system and the emergence of new variants of concern (VOCs). Finally, we suggest some insights using a one health approach that will help the country to face and overcome the current COVID-19 crisis.
Fen Lan, Chen Zhu, Rui Jin, Lingxiao Zhou, Yue Hu, Jianping Zhao, Shuyun Xu, ,
Therapeutic Advances in Chronic Disease, Volume 12; https://doi.org/10.1177/20406223211041924

Abstract:
Background: A novel coronavirus disease 2019 (COVID-19) has caused outbreaks worldwide, and the number of cases is rapidly increasing through human-to-human transmission. Because of the greater transmission capacity and possible subsequent multi-organ damage caused by the virus, it is crucial to understand precisely and manage COVID-19 patients. However, the underlying differences in the clinical features of COVID-19 with and without comorbidities are not fully understood. Aim: The objective of this study was to identify the clinical features of COVID-19 patients with and without complications to guide treatment and predict the prognosis. Method: We collected the clinical characteristics of COVID-19 patients with and without different complications, including hypertension, cardiovascular disease and diabetes. Next, we performed a baseline comparison of each index and traced the dynamic changes in these factors during hospitalization to explore the potential associations. Result: A clinical index of differential expression was used for the regression to select top-ranking factors. The top-ranking clinical characteristics varied in each subgroup, such as indices of liver function, renal function and inflammatory markers. Among them, the indices of renal function were highly ranked in all subgroups and displayed significant differences during hospitalization. Conclusion: Organ functions of COVID-19 patients, particularly renal function, should be cautiously taken care of during management and might be a crucial factor for a poor prognosis of these patients with complications.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top