Refine Search

New Search

Results: 11

(searched for: doi:10.1016/j.scitotenv.2021.146408)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Andrea D. George, Devrim Kaya, Blythe A. Layton, Kestrel Bailey, Christine Kelly, Kenneth J. Williamson,
Published: 8 July 2021
Abstract:
With the rapid onset of the COVID-19 pandemic, wastewater-based epidemiology (WBE) sampling methodologies for SARS-CoV-2 were often implemented quickly and may not have taken the unique drainage catchment characteristics into account. One question of debate is the relevance of grab versus composite samples when surveying for SARS-CoV-2 at various catchment scales. This study assessed the impact of grab versus composite sampling on the detection and quantification of SARS-CoV-2 in catchment basins with flow rates ranging from high-flow (wastewater treatment plant influent), to medium-flow (neighborhood-scale micro-sewershed), to low-flow (city block-scale micro-sewershed) and down to ultra-low flow (building scale). At the high-flow site, grab samples were reasonably comparable to 24-h composite samples with the same non-detect rate (0%) and SARS-CoV-2 concentrations that differed by 32% on the Log10 scale. However, as the flow rates decreased, the percentage of false-negative grab samples increased up to 44% and the SARS-CoV-2 concentrations of grab samples varied by up to 1-2 orders of magnitude compared to their respective composite sample concentrations. At the ultra-low-flow site, increased sampling frequencies down to every 5 min led to composite samples with higher fidelity to the SARS-CoV-2 load. Thus, composite sampling is superior to grab sampling, especially as flow decreases. Synopsis The need for composite sampling to generate reliable SARS-CoV-2 wastewater based epidemiology results increases as the collection basin scale decreases. Table of Content Art
, Aniruddha Adiga, Madhav Marathe, Christopher L. Barrett
Published: 6 July 2021
Abstract:
Tracking the COVID-19 pandemic has been a major challenge for policy makers. Although, several efforts are ongoing for accurate forecasting of cases, deaths, and hospitalization at various resolutions, few have been attempted for college campuses despite their potential to become COVID-19 hot-spots. In this paper, we present a real-time effort towards weekly forecasting of campus-level cases during the fall semester for four universities in Virginia, United States. We discuss the challenges related to data curation. A causal model is employed for forecasting with one free time-varying parameter, calibrated against case data. The model is then run forward in time to obtain multiple forecasts. We retrospectively evaluate the performance and, while forecast quality suffers during the campus reopening phase, the model makes reasonable forecasts as the fall semester progresses. We provide sensitivity analysis for the several model parameters. In addition, the forecasts are provided weekly to various state and local agencies.
Published: 15 June 2021
by MDPI
Viruses, Volume 13; doi:10.3390/v13061145

Abstract:
Influenza is a highly known contagious viral infection that has been responsible for the death of many people in history with pandemics. These pandemics have been occurring every 10 to 30 years in the last century. The most recent global pandemic prior to COVID-19 was the 2009 influenza A (H1N1) pandemic. A decade ago, the H1N1 virus caused 12,500 deaths in just 19 months globally. Now, again, the world has been challenged with another pandemic. Since December 2019, the first case of a novel coronavirus (COVID-19) infection was detected in Wuhan. This infection has risen rapidly throughout the world; even the World Health Organization (WHO) announced COVID-19 as a worldwide emergency to ensure human health and public safety. This review article aims to discuss important issues relating to COVID-19, including clinical, epidemiological, and pathological features of COVID-19 and recent progress in diagnosis and treatment approaches for the COVID-19 infection. We also highlight key similarities and differences between COVID-19 and influenza A to ensure the theoretical and practical details of COVID-19.
Steve E. Hrudey, Diego S. Silva, Jacob Shelley, Wendy Pons, Judy Isaac-Renton, Alex Ho-Shing Chik, Bernadette Conant
Environmental Science & Technology, Volume 55, pp 8484-8491; doi:10.1021/acs.est.1c00308

Abstract:
The COVID-19 pandemic has given rise to rapid and widespread international pursuit of wastewater surveillance for genetic signals of SARS-CoV-2, the virus causing the pandemic. Environmental scientists and engineers familiar with the techniques required for this endeavor have responded. Many of the environmental scientists engaged in these investigations have not necessarily had experience with the ethical obligations associated with generating and handling human health data. The Canadian Water Network facilitated adoption of these surveillance methods by creating a national coalition, which included a public health advisory group that recognized a need for ethics guidance for the wastewater approach to public health surveillance. This Policy Analysis addresses that need and is based on a review of relevant ethics literature tightly focused on ethics applicable to public health surveillance. That review revealed that classical health bioethics governing clinical practice and general public health ethics guidance did not adequately address key issues in wastewater surveillance. The 2017 World Health Organization guidelines, directly based on a systematic literature review, specifically addressed ethical issues in public health surveillance. The application of relevant ethical guidance to wastewater surveillance is analyzed and summarized for environmental scientists.
Katelyn Reeves, Jennifer Leibig, Antonio Feula, , Erika Lasda, William Johnson, Jacob Lilienfeld, Juniper Maggi, Kevin Pulley, Paul J. Wilkerson, et al.
Published: 26 May 2021
Abstract:
To assist in the COVID-19 public health guidance on a college campus, daily composite wastewater samples were withdrawn at 20 manhole locations across the University of Colorado Boulder campus. Low-cost autosamplers were fabricated in-house to enable an economical approach to this distributed study. These sample stations operated from August 25th until November 23rd during the fall 2020 semester, with 1,512 samples collected. The concentration of SARS-CoV-2 in each sample was quantified through two comparative reverse transcription quantitative polymerase chain reactions (RT-qPCRs). These methods were distinct in the utilization of technical replicates and normalization to an endogenous control. (1) Higher temporal resolution compensates for supply chain or other constraints that prevent technical or biological replicates. (2) The endogenous control normalized data agreed with the raw concentration data, minimizing the utility of normalization. The raw wastewater concentration values reflected SARS-CoV-2 prevalence on campus as detected by clinical services. Overall, combining the low-cost composite sampler with a method that quantifies the SARS-CoV-2 signal within six hours enabled actionable and time-responsive data delivered to key stakeholders. With daily reporting of the findings, wastewater surveillance assisted in decision making during critical phases of the pandemic on campus, from detecting individual cases within populations ranging from 109 to 2,048 individuals to monitoring the success of on-campus interventions. Synopsis Tracking SARS-CoV-2 in on-campus wastewater informs and monitors public health decisions and actions. TOC/Abstract Art
, Marc Salit
Published: 4 May 2021
Nature Reviews Genetics, Volume 22, pp 415-426; doi:10.1038/s41576-021-00360-w

Abstract:
Assembly and publication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome in January 2020 enabled the immediate development of tests to detect the new virus. This began the largest global testing programme in history, in which hundreds of millions of individuals have been tested to date. The unprecedented scale of testing has driven innovation in the strategies, technologies and concepts that govern testing in public health. This Review describes the changing role of testing during the COVID-19 pandemic, including the use of genomic surveillance to track SARS-CoV-2 transmission around the world, the use of contact tracing to contain disease outbreaks and testing for the presence of the virus circulating in the environment. Despite these efforts, widespread community transmission has become entrenched in many countries and has required the testing of populations to identify and isolate infected individuals, many of whom are asymptomatic. The diagnostic and epidemiological principles that underpin such population-scale testing are also considered, as are the high-throughput and point-of-care technologies that make testing feasible on a massive scale. Population-scale testing is an essential component of responses to the COVID-19 pandemic and is likely to become increasingly important in public health. Here, Mercer and Salit describe the roles of testing during the COVID-19 pandemic, including in genomic surveillance, contact tracing and environmental testing.
International Journal of Environmental Research and Public Health, Volume 18; doi:10.3390/ijerph18094455

Abstract:
Wastewater surveillance for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging approach to help identify the risk of a coronavirus disease (COVID-19) outbreak. This tool can contribute to public health surveillance at both community (wastewater treatment system) and institutional (e.g., colleges, prisons, and nursing homes) scales. This paper explores the successes, challenges, and lessons learned from initial wastewater surveillance efforts at colleges and university systems to inform future research, development and implementation. We present the experiences of 25 college and university systems in the United States that monitored campus wastewater for SARS-CoV-2 during the fall 2020 academic period. We describe the broad range of approaches, findings, resources, and impacts from these initial efforts. These institutions range in size, social and political geographies, and include both public and private institutions. Our analysis suggests that wastewater monitoring at colleges requires consideration of local information needs, sewage infrastructure, resources for sampling and analysis, college and community dynamics, approaches to interpretation and communication of results, and follow-up actions. Most colleges reported that a learning process of experimentation, evaluation, and adaptation was key to progress. This process requires ongoing collaboration among diverse stakeholders including decision-makers, researchers, faculty, facilities staff, students, and community members.
, Xindi C. Hu, Marisa Henry
Published: 20 April 2021
The publisher has not yet granted permission to display this abstract.
Aparna Keshaviah, Xindi C. Hu, Marisa Henry
Environmental Health Perspectives, Volume 129; doi:10.1289/ehp8572

Abstract:
Background:Wastewater testing offers a cost-effective strategy for measuring population disease prevalence and health behaviors. For COVID-19, wastewater surveillance addresses testing gaps and provides an early warning for outbreaks. As U.S. federal agencies build a National Wastewater Surveillance System around the pandemic, thinking through ways to develop flexible frameworks for wastewater sampling, testing, and reporting can avoid unnecessary system overhauls for future infectious disease, chronic disease, and drug epidemics.Objectives:We discuss ways to transform a historically academic exercise into a tool for epidemic response. We generalize lessons learned by a global network of wastewater researchers around validation and implementation for COVID-19 and opioids while also drawing on our experience with wastewater-based epidemiology in the United States.Discussion:Sustainable wastewater surveillance requires coordination between health and safety officials, utilities, labs, and researchers. Adapting sampling frequency, type, and location to threat level, community vulnerability, biomarker properties, and decisions that wastewater data will inform can increase the practical value of the data. Marketplace instabilities, coupled with a fragmented testing landscape due to specialization, may require officials to engage multiple labs to test for known and unknown threats. Government funding can stabilize the market, balancing commercial pressures with public good, and incentivize data sharing. When reporting results, standardizing metrics and contextualizing wastewater data with health resource data can provide insights into a community’s vulnerability and identify strategies to prevent health care systems from being overwhelmed. If wastewater data will inform policy decisions for an entire community, comparing characteristics of the wastewater treatment plant’s service population to those of the larger community can help determine whether the wastewater data are generalizable. Ethical protocols may be needed to protect privacy and avoid stigmatization. With data-driven approaches to sample collection, analysis, and interpretation, officials can use wastewater surveillance for adaptive resource allocation, pandemic management, and program evaluation. https://doi.org/10.1289/EHP8572
, Diego Alonso-Padilla, Edrick Ramos, Luisa Ma. Reyes,
Published: 22 March 2021
Abstract:
This study is the first focused on the presence of SARS-CoV-2 in different freshwater environments in an urban setting. Groundwater and surface water reservoirs for drinking water as well as water from receiving rivers of the Monterrey Metropolitan Area were sampled repeatedly during a SARS-CoV-2 peak phase between October 2020 and January 2021, and viral RNA was measured by quantitative reverse transcription polymerase chain reaction. Forty-four percent of the groundwater samples had detectable viral loads between 2.6 and 38.3 copies/ml. A significant correlation between viral load and sucralose concentration in groundwater reaffirmed the hypothesis of leaching and infiltrating effluent from surface and/or failing sewage pipes and emphasized the importance of water disinfection. Twelve percent of the surface water dam samples tested positive for viral RNA, with values varying between 3.3 and 3.8 copies/ml. Finally, 13% of the river samples were positive for viral RNA, with concentrations ranging from 2.5 to 7.0 copies/ml. Untreated wastewater samples taken in the same period showed viral loads of up to 3535 copies/ml, demonstrating a dilution effect and/or wastewater facilities efficiency of three orders of magnitude. Variations in the viral loads in the groundwater and surface water over time and at the submetropolitan level generally reflected the reported trends in infection cases for Monterrey. The viral loads in the freshwater environments of Monterrey represent a low risk for recreational activities according to a preliminary risk assessment model. However, this result should not be taken lightly due to uncertainty regarding data and model constraints and the possibility of situations where the infection risk may increase considerably.
, , Neha Mittal, Ariful Islam Juel, Visva Bharati Barua, Lauren Roppolo Brazell, KeShawn Hinton, Jordan Lontai, Nicholas Stark, Isaiah Young, et al.
Published: 1 March 2021
Science of The Total Environment, Volume 782, pp 146749-146749; doi:10.1016/j.scitotenv.2021.146749

Abstract:
The COVID-19 pandemic has been a source of ongoing challenges and presents an increased risk of illness in group environments, including jails, long-term care facilities, schools, and residential college campuses. Early reports that the SARS-CoV-2 virus was detectable in wastewater in advance of confirmed cases sparked widespread interest in wastewater-based epidemiology (WBE) as a tool for mitigation of COVID-19 outbreaks. One hypothesis was that wastewater surveillance might provide a cost-effective alternative to other more expensive approaches such as pooled and random testing of groups. In this paper, we report the outcomes of a wastewater surveillance pilot program at the University of North Carolina at Charlotte, a large urban university with a substantial population of students living in on-campus dormitories. Surveillance was conducted at the building level on a thrice-weekly schedule throughout the university's fall residential semester. In multiple cases, wastewater surveillance enabled the identification of asymptomatic COVID-19 cases that were not detected by other components of the campus monitoring program, which also included in-house contact tracing, symptomatic testing, scheduled testing of student athletes, and daily symptom reporting. In the context of all cluster events reported to the University community during the fall semester, wastewater-based testing events resulted in the identification of smaller clusters than were reported in other types of cluster events. Wastewater surveillance was able to detect single asymptomatic individuals in dorms with resident populations of 150–200. While the strategy described was developed for COVID-19, it is likely to be applicable to mitigation of future pandemics in universities and other group-living environments.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top