Refine Search

New Search

Results: 3

(searched for: doi:10.1016/j.micpro.2021.103910)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Published: 27 April 2022
by MDPI
Applied Sciences, Volume 12; https://doi.org/10.3390/app12094429

Abstract:
Recent developments in video analysis of sports and computer vision techniques have achieved significant improvements to enable a variety of critical operations. To provide enhanced information, such as detailed complex analysis in sports such as soccer, basketball, cricket, and badminton, studies have focused mainly on computer vision techniques employed to carry out different tasks. This paper presents a comprehensive review of sports video analysis for various applications: high-level analysis such as detection and classification of players, tracking players or balls in sports and predicting the trajectories of players or balls, recognizing the team’s strategies, and classifying various events in sports. The paper further discusses published works in a variety of application-specific tasks related to sports and the present researcher’s views regarding them. Since there is a wide research scope in sports for deploying computer vision techniques in various sports, some of the publicly available datasets related to a particular sport have been discussed. This paper reviews detailed discussion on some of the artificial intelligence (AI) applications, GPU-based work-stations and embedded platforms in sports vision. Finally, this review identifies the research directions, probable challenges, and future trends in the area of visual recognition in sports.
Wentong Wu, , Lingling Li, Yilin Long, Xiaodong Wang, Zhuohua Wang, Jinglun Li, Yi Chang
Published: 29 October 2021
Abstract:
This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images. Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolutional Neural Network), and R-FCN (Region-Based-Fully Convolutional Network) in image feature extraction are analyzed after introducing the relevant region proposal network. Secondly, YOLO-v5 algorithm is established on the basis of YOLO algorithm. Besides, the multi-scale anchor mechanism of Faster R-CNN is utilized to improve the detection ability of YOLO-v5 algorithm for small targets in the image in the process of image detection, and realize the high adaptability of YOLO-v5 algorithm to different sizes of images. Finally, the proposed detection method YOLO-v5 algorithm + R-FCN is compared with other algorithms in NWPU VHR-10 data set and Vaihingen data set. The experimental results show that the YOLO-v5 + R-FCN detection method has the optimal detection ability among many algorithms, especially for small targets in remote sensing images such as tennis courts, vehicles, and storage tanks. Moreover, the YOLO-v5 + R-FCN detection method can achieve high recall rates for different types of small targets. Furthermore, due to the deeper network architecture, the YOL v5 + R-FCN detection method has a stronger ability to extract the characteristics of image targets in the detection of remote sensing images. Meanwhile, it can achieve more accurate feature recognition and detection performance for the densely arranged target images in remote sensing images. This research can provide reference for the application of remote sensing technology in China, and promote the application of satellites for target detection tasks in related fields.
Jiandong Hou,
Published: 27 September 2021
The Journal of Supercomputing, Volume 78, pp 5507-5525; https://doi.org/10.1007/s11227-021-04082-y

The publisher has not yet granted permission to display this abstract.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top