Refine Search

New Search

Results: 9

(searched for: doi:10.1146/annurev-genet-112618-043830)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Pedro Morais, Hironori Adachi, Jonathan L. Chen,
Published: 29 July 2021
Methods in Molecular Biology pp 505-526; doi:10.1007/978-3-030-71612-7_19

Abstract:
Pseudouridylation is perhaps the most common epitranscriptomic modification among over 170 known chemical RNA modifications. Pseudouridine (Ψ) is highly conserved in various stable RNAs of all organisms. RNA pseudouridylation can be catalyzed by an RNA-independent mechanism by which stand-alone enzymes, known as pseudouridine synthases, recognize the substrate and catalyze the U-to-Ψ conversion reaction. Alternatively, pseudouridylation can be catalyzed by an RNA-guided mechanism, where a guide RNA (box H/ACA RNA), which is complexed with four core proteins (Cbf5/NAP57, Nhp2, Gar1, and Nop10), site-specifically directs the conversion of target uridine into a Ψ. Here, we discuss the underlying mechanisms of pseudouridylation as well as the methods for the detection of this modification. We also discuss pseudouridylation-linked diseases and potential clinical applications of this RNA modification.
Minsong Gao, Qingyi Zhang, Xin-Hua Feng,
Published: 1 June 2021
Acta Biomaterialia; doi:10.1016/j.actbio.2021.06.020

Abstract:
Synthetic modified messenger RNA (mRNA) has manifested great potentials for therapeutic applications such as vaccines and gene therapies, with the recent mRNA vaccines for global pandemic COVID-19 (corona virus disease 2019) attracting the tremendous attention. The chemical modifications and delivery vehicles of synthetic mRNAs are the two key factors for their in vivo therapeutic applications. Chemical modifications like nucleoside methylation endow the synthetic mRNAs with high stability and reduced stimulation of innate immunity. The development of scalable production of synthetic mRNA and efficient mRNA formulation and delivery strategies in recent years have remarkably advanced the field. It is worth noticing that we had limited knowledge on the roles of mRNA modifications in the past. However, the last decade has witnessed not only new discoveries of several naturally occurring mRNA modifications but also substantial advances in understanding their roles on regulating gene expression. It is highly necessary to reconsider the therapeutic system made by synthetic modified mRNAs and delivery vectors. In this review, we will mainly discuss the roles of various chemical modifications on synthetic mRNAs, briefly summarize the progresses of mRNA delivery strategies, and highlight some latest mRNA therapeutics applications including infectious disease vaccines, cancer immunotherapy, mRNA-based genetic reprogramming and protein replacement, mRNA-based gene editing. The development of synthetic mRNA drug holds great promise but lies behind small molecule and protein drugs largely due to the challenging issues regarding its stability, immunogenicity and potency. In the last 15 years, these issues have beensubstantially addressed by synthesizing chemically modified mRNA and developing powerful delivery systems; the mRNA therapeutics has entered an exciting new era begun with the approved mRNA vaccines for the COVID-19 infection disease. Here, we provide recent progresses in understanding the biological roles of various RNA chemical modifications, in developing mRNA delivery systems, and in advancing the emerging mRNA-based therapeutic applications, with the purpose to inspire the community to spawn new ideas for curing diseases.
Published: 4 May 2021
Abstract:
Pseudouridine (Ψ) is the most common non-canonical ribonucleoside present on mammalian non-coding RNAs (ncRNAs), including rRNAs, tRNAs and snRNAs, where it contributes ∼7% of the total uridine level. However, Ψ constitutes only ∼0.1% of the uridines present on mRNAs and its effect on mRNA function remains unclear. Ψ residues have been shown to inhibit the detection of exogenous RNA transcripts by host innate immune factors, thus raising the possibility that viruses might have subverted the addition of Ψ residues to mRNAs by host pseudouridine synthase (PUS) enzymes as a way to inhibit antiviral responses in infected cells. Here, we describe and validate a novel antibody-based Ψ mapping technique called photo-crosslinking assisted Ψ sequencing (PA-Ψ-seq) and use it to map Ψ residues on not only multiple cellular RNAs but also on the mRNAs and genomic RNA encoded by HIV-1. We describe several 293T-derived cell lines in which human PUS enzymes previously reported to add Ψ residues to human mRNAs, specifically PUS1, PUS7 and TRUB1/PUS4, were inactivated by gene editing. Surprisingly, while this allowed us to assign several sites of Ψ addition on cellular mRNAs to each of these three PUS enzymes, the Ψ sites present on HIV-1 transcripts remained unaffected. Moreover, loss of PUS1, PUS7 or TRUB1 function did not significantly reduce the level of Ψ residues detected on total human mRNA below the ∼0.1% level seen in wild type cells, thus implying that the PUS enzyme(s) that adds the bulk of Ψ residues to human mRNAs remains to be defined.
Pavel Kudrin, , Cathrine Broberg Vågbø,
Published: 6 April 2021
Abstract:
A large number of RNA modifications are known to affect processing and function of rRNA, tRNA and mRNA 1. The N4-acetylcytidine (ac4C) is the only known RNA acetylation event and is known to occur on rRNA, tRNA and mRNA 2,3. RNA modification by acetylation affects a number of biological processes, including translation and RNA stability 2. For a few RNA methyl modifications, a reversible nature has been demonstrated where specific writer proteins deposit the modification and eraser proteins can remove them by oxidative demethylation 4–6. The functionality of RNA modifications is often mediated by interaction with reader proteins that bind dependent on the presence of specific modifications 1. The NAT10 acetyltransferase has been firmly identified as the main writer of acetylation of cytidine ribonucleotides, but so far neither readers nor erasers of ac4C have been identified 2,3. Here we show, that ac4C is bound by the nucleolar protein NOP58 and deacetylated by SIRT7, for the first time demonstrating reversal by another mechanism than oxidative demethylation. NOP58 and SIRT7 are involved in snoRNA function and pre-ribosomal RNA processing 7–10, and using a NAT10 deficient cell line we can show that the reduction in ac4C levels affects both snoRNA sub-nuclear localization and pre-rRNA processing. SIRT7 can deacetylate RNA in vitro and endogenous levels of ac4C on snoRNA increase in a SIRT7 deficient cell line, supporting its endogenous function as an RNA deacetylase. In summary, we identify the first eraser and reader proteins of the RNA modification ac4C, respectively, and suggest an involvement of RNA acetylation in snoRNA function and pre-rRNA processing.
Guangyan Kan, Ziyang Wang, Chunjie Sheng, Gong Chen, Chen Yao, Yizhi Mao,
Published: 15 March 2021
Advanced Science, Volume 8; doi:10.1002/advs.202004344

Abstract:
Colorectal cancer, one of the most commonly diagnosed cancers worldwide, is often accompanied by uncontrolled proliferation of tumor cells. Dyskerin pseudouridine synthase 1 (DKC1), screened using the genome‐wide RNAi strategy, is a previously unidentified key regulator that promotes colorectal cancer cell proliferation. Enforced expression of DKC1, but not its catalytically inactive mutant D125A, accelerates cell growth in vitro and in vivo. DKC1 knockdown or its inhibitor pyrazofurin attenuates cell proliferation. Proteomics, RNA immunoprecipitation (RIP)‐seq, and RNA decay analyses reveal that DKC1 binds to and stabilizes the mRNA of several ribosomal proteins (RPs), including RPL10A, RPL22L1, RPL34, and RPS3. DKC1 depletion significantly accelerates mRNA decay of these RPs, which mediates the oncogenic function of DKC1. Interestingly, these DKC1‐regulated RPs also interact with HRAS and suppress the RAS/RAF/MEK/ERK pathway. Pyrazofurin and trametinib combination synergistically restrains colorectal cancer cell growth in vitro and in vivo. Furthermore, DKC1 is markedly upregulated in colorectal cancer tissues compared to adjacent normal tissues. Colorectal cancer patients with higher DKC1 expression has consistently poorer overall survival and progression‐free survival outcomes. Taken together, these data suggest that DKC1 is an essential gene and candidate therapeutic target for colorectal cancer.
Ofri Levi,
Published: 8 March 2021
Current Genetics pp 1-7; doi:10.1007/s00294-021-01168-1

Abstract:
Recent studies underscore RNA modifications as a novel mechanism to coordinate expression and function of different genes. While modifications on the sugar or base moieties of tRNA are well known, their roles in mRNA regulation are only starting to emerge. Interestingly, some modifications are present in both tRNA and mRNA, and here we discuss the functional significance of these common features. We describe key modifications that are present in both RNA types, elaborate on proteins that interact with them, and indicate recent works that identify roles in communicating tRNA processes and mRNA regulation. We propose that as tools are developed, the shortlist of features that are common between types of RNA will greatly expand and proteins that interact with them will be identified. In conclusion, the presence of the same modification in both RNA types provides an intersect between tRNA processes and mRNA regulation and implies a novel mechanism for connecting diverse cellular processes.
Published: 26 February 2021
by MDPI
Genes, Volume 12; doi:10.3390/genes12030345

Abstract:
RNA modifications, long considered to be molecular curiosities embellishing just abundant and non-coding RNAs, have now moved into the focus of both academic and applied research. Dedicated research efforts (epitranscriptomics) aim at deciphering the underlying principles by determining RNA modification landscapes and investigating the molecular mechanisms that establish, interpret and modulate the information potential of RNA beyond the combination of four canonical nucleotides. This has resulted in mapping various epitranscriptomes at high resolution and in cataloguing the effects caused by aberrant RNA modification circuitry. While the scope of the obtained insights has been complex and exciting, most of current epitranscriptomics appears to be stuck in the process of producing data, with very few efforts to disentangle cause from consequence when studying a specific RNA modification system. This article discusses various knowledge gaps in this field with the aim to raise one specific question: how are the enzymes regulated that dynamically install and modify RNA modifications? Furthermore, various technologies will be highlighted whose development and use might allow identifying specific and context-dependent regulators of epitranscriptomic mechanisms. Given the complexity of individual epitranscriptomes, determining their regulatory principles will become crucially important, especially when aiming at modifying specific aspects of an epitranscriptome both for experimental and, potentially, therapeutic purposes.
, Jette Bornholdt, Andrea Barghetti, ,
Published: 17 February 2021
Abstract:
Immune responses triggered by pathogen-associated molecular patterns (PAMPs) are key to pathogen defense, but drivers of the genetic reprogramming required to reach the immune state remain incompletely understood in plants. Here, we report a time-course study of the establishment of PAMP-triggered immunity (PTI) using cap analysis of gene expression (CAGE). Our results show that as much as 15% of all PAMP response genes display alternative transcription initiation. In several cases, use of alternative TSSs may be regulatory as it determines inclusion of target peptides or protein domains, or occurrence of upstream open reading frames (uORFs) in mRNA leader sequences. We also find that 60% of PAMP-response genes respond much earlier than previously thought. In particular, a previously unnoticed cluster of rapidly and transiently PAMP-induced genes is enriched in transcription factors whose functions, previously associated with biological processes as diverse as abiotic stress adaptation and stem cell activity, appear to converge on growth restriction. Furthermore, some examples of known potentiators of PTI, in one case under direct MAP kinase control, support the notion that the rapidly induced transcription factors could constitute direct links to PTI signaling pathways and drive gene expression changes underlying establishment of the immune state.
Eliana Destefanis, Gülben Avşar, Paula Groza, Antonia Romitelli, Serena Torrini, Pınar Pir, , ,
Published: 29 December 2020
RNA, Volume 27, pp 367-389; doi:10.1261/rna.077271.120

Abstract:
RNA modifications have recently emerged as a widespread and complex facet of gene expression regulation. Counting more than 170 distinct chemical modifications with far-reaching implications for RNA fate, they are collectively referred to as the epitranscriptome. These modifications can occur in all RNA species, including messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). In mRNAs the deposition, removal, and recognition of chemical marks by writers, erasers and readers influence their structure, localization, stability, and translation. In turn, this modulates key molecular and cellular processes such as RNA metabolism, cell cycle, apoptosis, and others. Unsurprisingly, given their relevance for cellular and organismal functions, alterations of epitranscriptomic marks have been observed in a broad range of human diseases, including cancer, neurological and metabolic disorders. Here, we will review the major types of mRNA modifications and editing processes in conjunction with the enzymes involved in their metabolism and describe their impact on human diseases. We present the current knowledge in an updated catalog. We will also discuss the emerging evidence on the crosstalk of epitranscriptomic marks and what this interplay could imply for the dynamics of mRNA modifications. Understanding how this complex regulatory layer can affect the course of human pathologies will ultimately lead to its exploitation toward novel epitranscriptomic therapeutic strategies.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top