Refine Search

New Search

Results: 2

(searched for: doi:10.15415/cs.2020.81002)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
, , , , Andrew Wilkes, John M. Townes, Robert G. Martindale, William B. Messer,
Published: 29 June 2021
Abstract:
Evidence continues to grow supporting the aerosol transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To assess the potential role of heating, ventilation, and air conditioning (HVAC) systems in airborne viral transmission, this study sought to determine the viral presence, if any, on air handling units in a healthcare setting where coronavirus disease 2019 (COVID-19) patients were being treated. The presence of SARS-CoV-2 RNA was detected in approximately 25% of samples taken from ten different locations in multiple air handlers. While samples were not evaluated for viral infectivity, the presence of viral RNA in air handlers raises the possibility that viral particles can enter and travel within the air handling system of a hospital, from room return air through high-efficiency MERV-15 filters and into supply air ducts. Although no known transmission events were determined to be associated with these specimens, the findings suggest the potential for HVAC systems to facilitate transfer of virions to locations remote from areas where infected persons reside. These results are important within and outside of healthcare settings and may present necessary guidance for building operators of facilities that are not equipped with high-efficiency filtration. Furthermore, the identification of SARS-CoV-2 in HVAC components indicates the potential utility as an indoor environmental surveillance location.
, , , Chee Kiang Ivan Tan, Hongying Li, Ou Yang Zhong Liang, , Jing Yee Chee, Anton Sadovoy, Shu-Ye Jiang, et al.
Research, Volume 2021, pp 1-11; https://doi.org/10.34133/2021/2173642

Abstract:
Small-sized droplets/aerosol transmission is one of the factors responsible for the spread of COVID-19, in addition to large droplets and surface contamination (fomites). While large droplets and surface contamination can be relatively easier to deal with (i.e., using mask and proper hygiene measures), aerosol presents a different challenge due to their ability to remain airborne for a long time. This calls for mitigation solutions that can rapidly eliminate the airborne aerosol. Pre-COVID-19, air ionizers have been touted as effective tools to eliminate small particulates. In this work, we sought to evaluate the efficacy of a novel plant-based ionizer in eliminating aerosol. It was found that factors such as the ion concentration, humidity, and ventilation can drastically affect the efficacy of aerosol removal. The aerosol removal rate was quantified in terms of ACH (air changes per hour) and CADR- (clean air delivery rate-) equivalent unit, with ACH as high as 12 and CADR as high as 141 ft3/minute being achieved by a plant-based ionizer in a small isolated room. This work provides an important and timely guidance on the effective deployment of ionizers in minimizing the risk of COVID-19 spread via airborne aerosol, especially in a poorly-ventilated environment.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top