Refine Search

New Search

Results: 34

(searched for: doi:10.1038/s41558-020-0773-5)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
Byomkesh Talukder, Nilanjana Ganguli, Richard Matthew, Gary W Vanloon, Keith W. Hipel,
The Journal of Climate Change and Health; https://doi.org/10.1016/j.joclim.2022.100114

Abstract:
A planetary health perspective views human health as a function of the interdependent relationship between human systems and the natural systems in which we live. The planetary health impacts of climate change induced ocean biodiversity loss are little understood. Based on a systematic literature review, we summarize how climate change-induced ocean warming, acidification, and deoxygenation affect ocean biodiversity and their resulting planetary health impacts. These impacts on the planets’ natural and human systems include biospheric and human consequences for ecosystem services, food and nutrition security, human livelihoods, biomedical and pharmaceutical research, disaster risk management, and for organisms pathogenic to humans. Understanding the causes and effects of climate change impacts on the ocean and its biodiversity and planetary health is crucial for taking preventive, restorative and sustainable actions to ensure ocean biodiversity and its services. Future courses of action to mitigate climate change-related ocean biodiversity loss to support sound planetary health are discussed.
ISPRS International Journal of Geo-Information, Volume 11; https://doi.org/10.3390/ijgi11010021

Abstract:
In recent years, extreme weather has frequently occurred worldwide and caused significant disasters, including large-scale forest fires, rare heat waves, heavy rains, floods, and tornadoes. Those have caused unprecedented losses of human lives and property in some countries, affecting the livelihoods of many people. Climate change and natural disasters are the two hotspots of scientific research today, and there is a certain degree of correlation between the two. Although countries worldwide have long known about climate change and its threats to human existence and have been discussing countermeasures, they have still not been able to carry out concerted and practical actions. The study takes Canada as an example, and selects six representative provinces to evaluate the temporal change characteristics of extreme temperature at different sites. We use MATLAB software to perform multiple linear regression, linear fitting methods, and Pearson correlation analysis to analyze spatial changes and time-space trends. The method studies the relationship between the emergence of extreme weather and climate change and uses the evolutionary game theory to explore whether there is any contradiction between global warming and extreme local cold. The study found: (i) The maximum temperature of most provinces in Canada will be constantly higher, and the minimum temperature will be lower. Generally speaking, the average temperature of each year is slowly decreasing. (ii) The average temperature data of British Columbia (Eastern Pacific) and Quebec (West Atlantic) show that ocean temperature has a specific effect on land temperature in surrounding areas. (iii) Pearson correlation analysis shows that the emergence of extreme weather is closely related to climate change. (iv) The evolution path of the two-party game shows that global warming and the occurrence of extreme local cold are not contradictory. Under the conditions, there is a certain degree of synchronization between the two, interacting and influencing each other.
, Qianshuo Zhao, Mark J. Costello, Wolfgang Kiessling
Published: 23 December 2021
Biogeosciences, Volume 18, pp 6567-6578; https://doi.org/10.5194/bg-18-6567-2021

Abstract:
Anthropogenic climate change is increasingly threatening biodiversity on a global scale. Rich spots of biodiversity, regions with exceptionally high endemism and/or number of species, are a top priority for nature conservation. Terrestrial studies have hypothesized that rich spots occur in places where long-term climate change was dampened relative to other regions. Here we tested whether biodiversity rich spots are likely to provide refugia for organisms during anthropogenic climate change. We assessed the spatial distribution of both historic (absolute temperature change and climate change velocities) and projected climate change in terrestrial, freshwater, and marine rich spots. Our analyses confirm the general consensus that global warming will impact almost all rich spots of all three realms and suggest that their characteristic biota is expected to witness similar forcing to other areas, including range shifts and elevated risk of extinction. Marine rich spots seem to be particularly sensitive to global warming: they have warmed more, have higher climate velocities, and are projected to experience higher future warming than non-rich-spot areas. However, our results also suggest that terrestrial and freshwater rich spots will be somewhat less affected than other areas. These findings emphasize the urgency of protecting a comprehensive and representative network of biodiversity-rich areas that accommodate species range shifts under climate change.
David Cote, Cassandra A. Konecny, Jennica Seiden, Tristan Hauser, Trond Kristiansen, Ben J. Laurel
Published: 29 November 2021
Frontiers in Marine Science, Volume 8; https://doi.org/10.3389/fmars.2021.764072

Abstract:
Climate change will alter ecosystems and impose hardships on marine resource users as fish assemblages redistribute to habitats that meet their physiological requirements. Marine gadids represent some of the most ecologically and socio-economically important species in the North Atlantic, but face an uncertain future in the wake of rising ocean temperatures. We applied CMIP5 ocean temperature projections to egg survival and juvenile growth models of three northwest Atlantic coastal species of gadids (Atlantic cod, Polar cod, and Greenland cod), each with different thermal affinities and life histories. We illustrate how physiologically based species distribution models (SDMs) can be used to predict habitat distribution shifts and compare vulnerabilities of species and life stages with changing ocean conditions. We also derived an integrated habitat suitability index from the combined surfaces of each metric to predict areas and periods where thermal conditions were suitable for both life stages. Suitable thermal habitat shifted poleward for the juvenile life stages of all three species, but the area remaining differed across species and life stages through time. Arctic specialists like Polar cod are predicted to experience reductions in suitable juvenile habitat based on metrics of egg survival and growth potential. In contrast, habitat loss in boreal and subarctic species like Atlantic cod and Greenland cod may be dampened due to increases in suitable egg survival habitats as suitable juvenile growth potential habitats decrease. These results emphasize the need for mechanistic SDMs that can account for the combined effects of changing seasonal thermal requirements under varying climate change scenarios.
Kristen Mello-Rafter, Derek Sowers, Mashkoor Malik, Les Watling, Larry A. Mayer,
Published: 20 September 2021
Frontiers in Marine Science, Volume 8; https://doi.org/10.3389/fmars.2021.691668

Abstract:
Deep sea canyons and seamounts are topographically complex features that are considered to be biological hotspots. Anthropogenic pressures related to climate change and human activities are placing the species that inhabit these features at risk. Though studies have examined species composition on seamounts and canyons, few have compared communities between them, and even fewer studies have examined how species’ abundances correlate with environmental conditions or geomorphology. Consequently, this study compares species composition, community structure, and environmental variables between Northwest Atlantic continental margin canyons and seamounts along the New England Seamount Chain. Geoforms were also related to the occurrence of phyla and biodiversity. Overall, there was a significant difference in species composition between canyons and seamounts with sponges, corals, sea urchins and seastars contributing heavily to observed differences. Environmental conditions of temperature and salinity and the seafloor property slope contributed significantly to communities observed on seamounts, while substrate, depth and salinity contributed significantly to canyon communities. Abundances were significantly higher in canyons, but taxonomic richness, evenness, and diversity were all greater on seamounts. In an era where climate change and human activity have the potential to alter environmental parameters in the deep sea, it is important to examine factors that influence the spatial distribution of deep-sea benthic communities.
Published: 30 August 2021
Environmental Sociology pp 1-18; https://doi.org/10.1080/23251042.2021.1973656

Abstract:
Recent research in the area of science and technology studies focuses on climate change denial, the spread of misinformation, and public distrust in climate scientists; these beliefs are held especially by those dependent on fossil fuel extraction for their livelihoods. Many of the same individuals who deny the scientific consensus on climate change are nevertheless directly impacted by the climate crisis and environmental disasters. In fossil fuel dependent locations, do people continue to deny the scientific consensus on climate change and distrust climate scientists even after themselves experiencing a catastrophic flood? This paper investigates this question through interviews with 40 people affected by the 2013 Southern Alberta Flood, the costliest flood in Canadian history, who also live in the City of Calgary, the economic hub for Canada’s tar sands. Results indicate the participants rejected the scientific consensus on climate change, voiced a distrust in the motivations of climate scientists, though hoped they would one day discover the ‘truth’, and worked discursively to protect the oil industry. The findings reveal the complexity of post-disaster environmental views and trust in science, as well as how fossil fuel dependence shapes these views.
Published: 27 August 2021
Frontiers in Climate, Volume 3; https://doi.org/10.3389/fclim.2021.720755

Abstract:
IPCC reporting culture and structure leads to a failure to highlight potential vulnerabilities and risk in areas where research is largely absent. Nowhere is this more obvious than in treatment of the deep ocean (waters below 200 m), where climate research is in its infancy, but human exploitation of resources is on the rise. Understanding climate-induced changes in deep- sea environments, ecosystems and their services, including carbon cycling and climate regulation, is fundamental to future ocean sustainability and to decisions about active climate remediation.
, Eric Galbraith, Julia L. Blanchard, Cheryl Harrison, Nicolas Barrier, Catherine Bulman, William Cheung, Marta Coll, Tyler D. Eddy, Maite Erauskin-Extramiana, et al.
Published: 9 August 2021
Progress in Oceanography, Volume 198; https://doi.org/10.1016/j.pocean.2021.102659

Abstract:
Climate change is warming the ocean and impacting lower trophic level (LTL) organisms. Marine ecosystem models can provide estimates of how these changes will propagate to larger animals and impact societal services such as fisheries, but at present these estimates vary widely. A better understanding of what drives this inter-model variation will improve our ability to project fisheries and other ecosystem services into the future, while also helping to identify uncertainties in process understanding. Here, we explore the mechanisms that underlie the diversity of responses to changes in temperature and LTLs in eight global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP). Temperature and LTL impacts on total consumer biomass and ecosystem structure (defined as the relative change of small and large organism biomass) were isolated using a comparative experimental protocol. Total model biomass varied between −35% to +3% in response to warming, and -17% to +15% in response to LTL changes. There was little consensus about the spatial redistribution of biomass or changes in the balance between small and large organisms (ecosystem structure) in response to warming, an LTL impacts on total consumer biomass varied depending on the choice of LTL forcing terms. Overall, climate change impacts on consumer biomass and ecosystem structure are well approximated by the sum of temperature and LTL impacts, indicating an absence of nonlinear interaction between the models’ drivers. Our results highlight a lack of theoretical clarity about how to represent fundamental ecological mechanisms, most importantly how temperature impacts scale from individual to ecosystem level, and the need to better understand the two-way coupling between LTL organisms and consumers. We finish by identifying future research needs to strengthen global marine ecosystem modelling and improve projections of climate change impacts.
, Kjell Rong Utne, Vidar Wennevik, Alexander Christian Beck, Kyrre Kausrud, Kjetil Hindar, Carlos Garcia de Leaniz, Corrine Cherbonnel, Jamie Coughlan, Tom F. Cross, et al.
Published: 5 July 2021
Fish and Fisheries, Volume 22, pp 1274-1306; https://doi.org/10.1111/faf.12587

Abstract:
The survival of Atlantic salmon (Salmo salar), an increasingly rare anadromous species, has declined dramatically during its marine phase, with disproportionate impacts on the poorly understood early post-smolt period. Logistical constraints on collecting oceanic data to inform this issue pose a formidable obstacle. To advance understanding of post-smolt distributional ecology in the North-east Atlantic, a comprehensive analysis of existing information was undertaken. Data were synthesized from 385 marine cruises, 10,202 individual trawls, and 9,269 captured post-smolts, spanning three decades and ~4.75 million km2 of ocean, with 3,423 individuals genetically assigned to regional phylogeographic origin. The findings confirm major migrational post-smolt aggregations on the continental shelf-edge off Ireland, Scotland and Norway, and an important marine foraging area in the Norwegian Sea. Genetic analysis shows that aggregational stock composition does not simply reflect distance to natal rivers, with northern phylogeographic stock groups significantly under-represented in sampled high-seas aggregations. It identifies a key foraging habitat for southern European post-smolts located in international waters immediately west of the Vøring Plateau escarpment, potentially exposing them to a high by-catch mortality from extra-territorial pelagic fisheries. Evidence of the differential distribution of regional stocks points to fundamental differences in their migration behaviours and may lead to inter-stock variation in responses to environmental change and marine survival. The study shows that understanding of post-smolt marine ecology, as regards to stock-specific variations in habitat utilization, biological performance and exposure to mortality factors, can be significantly advanced by data integration across studies and exploiting genetic approaches.
, Rubén Venegas-Li, , Salit Kark,
Published: 7 June 2021
Ocean & Coastal Management, Volume 211; https://doi.org/10.1016/j.ocecoaman.2021.105747

The publisher has not yet granted permission to display this abstract.
, David S. Schoeman, Karen J. Evans, Scott F. Cummins, Kylie L. Scales
Published: 18 May 2021
Fish and Fisheries, Volume 22, pp 1067-1084; https://doi.org/10.1111/faf.12569

Abstract:
Marine ecosystem forecasting is an important innovation in fisheries science with considerable value for industry and management, providing new data-driven means of predicting the distribution and availability of commercially exploited fish stocks over a range of timescales, including near-real-time and seasonal. Marine ecosystem forecasting is rapidly advancing as a field, yet tools produced for fisheries to date focus primarily on predicting species distributions. The next generation of marine ecosystem forecasting products could be enhanced by also incorporating predictions of biological characteristics of fish caught, such as body condition and epidemiological status, thereby expanding the utility of these methods beyond predicting distribution alone. Improving the biological dimensions of marine ecosystem forecasting could allow for optimization of efficiencies in wild-capture fisheries by minimizing discarding and waste and maximizing the value of landed fish. These advancements are of direct benefit to industry and management, address several of the United Nations Sustainable Development Goals pertaining to fisheries sustainability and have the potential to support the maintenance of global food and micronutrient security under rapidly changing environmental conditions. Here, we describe the current state of the art in marine ecosystem forecasting; review the physical-biological linkages that underlie variability in the body condition of commercially valuable fish and shellfish with particular reference to marine climate change; and outline key considerations for the next generation of marine ecosystem forecasting tools for wild-capture fisheries.
, , , Patrick W. Robinson, , , , , Theresa R. Keates, Yasuhiko Naito
Science Advances, Volume 7; https://doi.org/10.1126/sciadv.abg3628

Abstract:
Small mesopelagic fishes dominate the world’s total fish biomass, yet their ecological importance as prey for large marine animals is poorly understood. To reveal the little-known ecosystem dynamics, we identified prey, measured feeding events, and quantified the daily energy balance of 48 deep-diving elephant seals throughout their oceanic migrations by leveraging innovative technologies: animal-borne smart accelerometers and video cameras. Seals only attained positive energy balance after feeding 1000 to 2000 times per day on small fishes, which required continuous deep diving (80 to 100% of each day). Interspecies allometry suggests that female elephant seals have exceptional diving abilities relative to their body size, enabling them to exploit a unique foraging niche on small but abundant mesopelagic fish. This unique foraging niche requires extreme round-the-clock deep diving, limiting the behavioral plasticity of elephant seals to a changing mesopelagic ecosystem.
, Douglas Francisco Marcolino Gherardi, Luciano Ponzi Pezzi, Leilane Gonçalves dos Passos, Clarissa Akemi Kajiya Endo, Juan Pablo Quimbayo
Published: 14 May 2021
Scientific Reports, Volume 11, pp 1-12; https://doi.org/10.1038/s41598-021-89192-6

Abstract:
Projected future climate scenarios anticipate a warmer tropical ocean and changes in surface currents that will likely influence the survival of marine organisms and the connectivity of marine protected areas (MPAs) networks. We simulated the regional effects of climate change on the demographic connectivity of parrotfishes in nine MPAs in the South Atlantic through downscaling of the HadGEM2-ES Earth System Model running the RCP 8.5 greenhouse gas trajectory. Results indicate a tropicalization scenario over the tropical southwest Atlantic following an increase of sea surface temperature (SST) between 1.8 and 4.5 °C and changes in mean surface currents between − 0.6 to 0.5 m s−1 relative to present conditions. High mortality rates will reduce demographic connectivity and increase the isolation of oceanic islands. The simulation of organismal response to ocean warming shows that acclimation can significantly improve (p < 0.001) particle survival, promoting connectivity and tropicalization of MPAs, with potential impacts on their functional integrity and long-term resilience.
Published: 16 April 2021
Nature Communications, Volume 12, pp 1-8; https://doi.org/10.1038/s41467-021-22584-4

Abstract:
Less than a quarter of ocean deoxygenation that will ultimately be caused by historical CO2 emissions is already realized, according to millennial-scale model simulations that assume zero CO2 emissions from year 2021 onwards. About 80% of the committed oxygen loss occurs below 2000 m depth, where a more sluggish overturning circulation will increase water residence times and accumulation of respiratory oxygen demand. According to the model results, the deep ocean will thereby lose more than 10% of its pre-industrial oxygen content even if CO2 emissions and thus global warming were stopped today. In the surface layer, however, the ongoing deoxygenation will largely stop once CO2 emissions are stopped. Accounting for the joint effects of committed oxygen loss and ocean warming, metabolic viability representative for marine animals declines by up to 25% over large regions of the deep ocean, posing an unavoidable escalation of anthropogenic pressure on deep-ocean ecosystems.
Stella Manes, Mark J. Costello, Heath Beckett, Anindita Debnath, Eleanor Devenish-Nelson, Kerry-Anne Grey, Rhosanna Jenkins, Tasnuva Ming Khan, Wolfgang Kiessling, Cristina Krause, et al.
Published: 9 April 2021
Biological Conservation, Volume 257; https://doi.org/10.1016/j.biocon.2021.109070

The publisher has not yet granted permission to display this abstract.
Frontiers in Marine Science, Volume 8; https://doi.org/10.3389/fmars.2021.667048

Abstract:
The deep sea is the most extensive habitat on our planet, and it supports surprisingly high biodiversity. With a multitude of different environments and conditions previously thought to be inhabitable, it is unclear how such high diversity was able to develop, but habitat heterogeneity and nutrient flux are certainly important factors to consider. In this review, the different methodologies used to examine biodiversity in the remote depths of the oceans are considered. In addition, the different environments in which biodiversity is studied are presented, and the various hypotheses on how high biodiversity is possible are examined. Unfortunately, this diversity is threatened by human impact similarly to shallow waters, and future endeavors such as deep-sea mineral extraction must be considered as a major threat to the environment. Many mysteries persist in the deep sea, but it is certain that threats such as overfishing, plastic pollution, and changes in ocean chemistry due to climate change are impacting even the most remote places in the oceans. It remains uncertain whether the deep sea is resilient toward anthropogenic disturbances, yet this is difficult to research on short timescales. There is little hope for areas in which exploitation, such as deep-sea mining, will be directly impacting the benthos and proper regulations are required to preserve biodiversity in the deep sea.
, Kristen Mello, Derek Sowers, Mashkoor Malik, Les Watling, Larry A. Mayer
Global Ecology and Biogeography, Volume 30, pp 1286-1298; https://doi.org/10.1111/geb.13285

The publisher has not yet granted permission to display this abstract.
Published: 20 February 2021
by MDPI
Abstract:
Flexible propulsors are ubiquitous in aquatic and flying organisms and are of great interest for bioinspired engineering. However, many animal models, especially those found in the deep sea, remain inaccessible to direct observation in the laboratory. We address this challenge by conducting an integrative study of the giant larvacean, an invertebrate swimmer and “fluid pump” of the mesopelagic zone. We demonstrate a workflow involving deep sea robots, advanced imaging tools, and numerical modeling to assess the kinematics and resulting fluid transport of the larvacean’s beating tail. A computational model of the tail was developed to simulate the local fluid environment and the tail kinematics using embedded passive (elastic) and active (muscular) material properties. The model examines how varying the extent of muscular activation affects the resulting kinematics and fluid transport rates. We find that muscle activation in two-thirds of the tail’s length, which corresponds to the observed kinematics in giant larvaceans, generates a greater average downstream flow speed than other designs with the same power input. Our results suggest that the active and passive material properties of the larvacean tail are tuned to produce efficient fluid transport for swimming and feeding, as well as provide new insight into the role of flexibility in biological propulsors.
, Daniela Nobre, João N. Monteiro, Pedro M. Sousa, Eudriano F. S. Costa, Vânia Baptista, Andreia Ovelheiro, Vasco M. N. C. S. Vieira, Luís Chícharo, Miguel Gaspar, et al.
Published: 3 February 2021
Scientific Reports, Volume 11, pp 1-18; https://doi.org/10.1038/s41598-021-82595-5

Abstract:
This is the first attempt to apply an expert-based ecological vulnerability assessment of the effects of climate change on the main marine resources of Portugal. The vulnerability, exposure, sensitivity, adaptive capacity, and expected directional effects of 74 species of fish and invertebrates of commercial interest is estimated based on criteria related to their life-history and level of conservation or exploitation. This analysis is performed separately for three regions of Portugal and two scenarios of climate change (RCP 4.5 and RCP 8.5). To do that, the fourth assessment report IPCC framework for vulnerability assessments was coupled to the outputs of a physical-biogeochemical model allowing to weight the exposure of the species by the expected variability of the environmental variables in the future. The highest vulnerabilities were found for some migratory and elasmobranch species, although overall vulnerability scores were low probably due to the high adaptive capacity of species from temperate ecosystems. Among regions, the highest average vulnerability was estimated for the species in the Central region while higher vulnerabilities were identified under climate change scenario RCP 8.5 in the three regions, due to higher expected climatic variability. This work establishes the basis for the assessment of the vulnerability of the human activities relying on marine resources in the context of climate change.
, Flávia Lucena-Frédou, Michael Maia Mincarone, Andrey Soares, François Le Loc’H, Thierry Frédou, Frédéric Ménard, Arnaud Bertrand
Published: 2 December 2020
Scientific Reports, Volume 10, pp 1-13; https://doi.org/10.1038/s41598-020-77222-8

Abstract:
Mesopelagic fishes are numerically the most important vertebrate group of all world’s oceans. While these species are increasingly threatened by anthropogenic activities, basic biological knowledge is still lacking. For instance, major uncertainties remain on the behaviour, ecology, and thus functional roles of mesopelagic micronektivores, particularly regarding their interactions with physicochemical features. Here, we examine the trophic ecology, habitat, and migratory behaviour of the viperfish (Chauliodus sloani)—a poorly known and abundant deep-sea species—to further understand the ecology and thus functional role of mesopelagic micronektivores. Moreover, we explore how physical drivers may affect these features and how these relationships are likely to change over large oceanic areas. The viperfish heavily preys on epipelagic migrant species, especially myctophids, and presents spatial and trophic ontogenetic shifts. Temperature restricts its vertical distribution. Therefore, its trophodynamics, migratory behaviour, and functional roles are expected to be modulated by the latitudinal change in temperature. For instance, in most tropical regions the viperfish stay full-time feeding, excreting, and serving as prey (e.g. for bathypelagic predators) at deep layers. On the contrary, in temperate regions, the viperfish ascend to superficial waters where they trophically interact with epipelagic predators and may release carbon where its remineralization is the greatest.
, Ross Corkrey, Kristin Kaschner, Cristina Garilao,
Published: 1 December 2020
Ecological Research, Volume 36, pp 266-280; https://doi.org/10.1111/1440-1703.12193

The publisher has not yet granted permission to display this abstract.
Kerry L. Howell, Ana Hilário, A. Louise Allcock, David M. Bailey, Maria Baker, Malcolm R. Clark, Ana Colaço, Jon Copley, Erik E. Cordes, Roberto Danovaro, et al.
Published: 25 November 2020
Frontiers in Marine Science, Volume 7; https://doi.org/10.3389/fmars.2020.584861

Abstract:
The ocean plays a crucial role in the functioning of the Earth System and in the provision of vital goods and services. The United Nations (UN) declared 2021–2030 as the UN Decade of Ocean Science for Sustainable Development. The Roadmap for the Ocean Decade aims to achieve six critical societal outcomes (SOs) by 2030, through the pursuit of four objectives (Os). It specifically recognizes the scarcity of biological data for deep-sea biomes, and challenges the global scientific community to conduct research to advance understanding of deep-sea ecosystems to inform sustainable management. In this paper, we map four key scientific questions identified by the academic community to the Ocean Decade SOs: (i) What is the diversity of life in the deep ocean? (ii) How are populations and habitats connected? (iii) What is the role of living organisms in ecosystem function and service provision? and (iv) How do species, communities, and ecosystems respond to disturbance? We then consider the design of a global-scale program to address these questions by reviewing key drivers of ecological pattern and process. We recommend using the following criteria to stratify a global survey design: biogeographic region, depth, horizontal distance, substrate type, high and low climate hazard, fished/unfished, near/far from sources of pollution, licensed/protected from industry activities. We consider both spatial and temporal surveys, and emphasize new biological data collection that prioritizes southern and polar latitudes, deeper (> 2000 m) depths, and midwater environments. We provide guidance on observational, experimental, and monitoring needs for different benthic and pelagic ecosystems. We then review recent efforts to standardize biological data and specimen collection and archiving, making “sampling design to knowledge application” recommendations in the context of a new global program. We also review and comment on needs, and recommend actions, to develop capacity in deep-sea research; and the role of inclusivity - from accessing indigenous and local knowledge to the sharing of technologies - as part of such a global program. We discuss the concept of a new global deep-sea biological research program ‘Challenger 150,’ highlighting what it could deliver for the Ocean Decade and UN Sustainable Development Goal 14.
, Jeroen Steenbeek, Maria Grazia Pennino, Joe Buszowski, Kristin Kaschner, Heike K. Lotze, Yannick Rousseau, Derek P. Tittensor, Carl Walters, Reg A. Watson, et al.
Published: 16 October 2020
Frontiers in Marine Science, Volume 7; https://doi.org/10.3389/fmars.2020.567877

Abstract:
Considerable effort is being deployed to predict the impacts of climate change and anthropogenic activities on the ocean's biophysical environment, biodiversity, and natural resources to better understand how marine ecosystems and provided services to humans are likely to change and explore alternative pathways and options. We present an updated version of EcoOcean (v2), a spatial-temporal ecosystem modeling complex of the global ocean that spans food-web dynamics from primary producers to top predators. Advancements include an enhanced ability to reproduce spatial-temporal ecosystem dynamics by linking species productivity, distributions, and trophic interactions to the impacts of climate change and worldwide fisheries. The updated modeling platform is used to simulate past and future scenarios of change, where we quantify the impacts of alternative configurations of the ecological model, responses to climate-change scenarios, and the additional impacts of fishing. Climate-change scenarios are obtained from two Earth-System Models (ESMs, GFDL-ESM2M, and IPSL-CMA5-LR) and two contrasting emission pathways (RCPs 2.6 and 8.5) for historical (1950–2005) and future (2006–2100) periods. Standardized ecological indicators and biomasses of selected species groups are used to compare simulations. Results show how future ecological trajectories are sensitive to alternative configurations of EcoOcean, and yield moderate differences when looking at ecological indicators and larger differences for biomasses of species groups. Ecological trajectories are also sensitive to environmental drivers from alternative ESM outputs and RCPs, and show spatial variability and more severe changes when IPSL and RCP 8.5 are used. Under a non-fishing configuration, larger organisms show decreasing trends, while smaller organisms show mixed or increasing results. Fishing intensifies the negative effects predicted by climate change, again stronger under IPSL and RCP 8.5, which results in stronger biomass declines for species already losing under climate change, or dampened positive impacts for those increasing. Several species groups that win under climate change become losers under combined impacts, while only a few (small benthopelagic fish and cephalopods) species are projected to show positive biomass changes under cumulative impacts. EcoOcean v2 can contribute to the quantification of cumulative impact assessments of multiple stressors and of plausible ocean-based solutions to prevent, mitigate and adapt to global change.
Published: 21 September 2020
Nature Climate Change, Volume 10, pp 1124-1129; https://doi.org/10.1038/s41558-020-0889-7

The publisher has not yet granted permission to display this abstract.
Proceedings of the Royal Society B: Biological Sciences, Volume 287; https://doi.org/10.1098/rspb.2020.0889

Abstract:
Overexploitation is recognized as one of the main threats to global biodiversity. Here, we report a widespread change in the functional diversity of fisheries catches from the large marine ecosystems (LMEs) of the world over the past 65 years (1950 to 2014). The spatial and temporal trends of functional diversity exploited from the LMEs were calculated using global reconstructed marine fisheries catch data provided by the Sea Around Us initiative (including subsistence, artisanal, recreational, industrial fisheries, and discards) and functional trait data available in FishBase. Our analyses uncovered a substantial increase in the functional richness of both ray-finned fishes (80% of LMEs) and cartilaginous species (sharks and rays) (75% of LMESs), in line with an increase in the taxonomic richness, extracted from these ecosystems. The functional evenness and functional divergence of these catches have also altered substantially over the time span of this study, with considerable geographic variation in the patterns detected. These trends show that global fisheries are increasingly targeting species that play diverse roles within the marine ecosystem and underline the importance of incorporating functional diversity in ecosystem management.
Published: 17 August 2020
by MDPI
Abstract:
Mycobacteriosis is a chronic bacterial disease reported in aquatic and terrestrial animals, including humans. The disease affects a wide range of cultured and wild organisms worldwide. Mycobacteriosis is well-known in aquatic vertebrates (e.g., finfish, marine mammals), while in the last few years, reports of its presence in aquatic invertebrates have been on the rise, for both freshwater and marine species. The number of cases is likely to increase as a result of increased awareness, surveillance and availability of diagnostic methods. Domestication of wild aquatic species and the intensification of modern aquaculture are also leading to an increase in the number of reported cases. Moreover, climate changes are affecting fresh and marine aquatic ecosystems. The increasing reports of mycobacteriosis in aquatic invertebrates may also be influenced by global climate warming, which could contribute to the microbes’ development and survival rates, pathogen transmission and host susceptibility. Several species of the genus Mycobacterium have been diagnosed in aquatic invertebrates; a few of them are significant due to their wide host spectrum, economic impact in aquaculture, and zoonotic potential. The impact of mycobacteriosis in aquatic invertebrates is probably underestimated, and there is currently no effective treatment other than facility disinfection. In this review, we provide an overview of the diversity of mycobacterial infections reported in molluscs, crustaceans, cnidarians, echinoderms and sponges. We highlight important issues relating to its pathological manifestation, diagnosis and zoonotic considerations.
Jian-Xiang Liao, , Moriaki Yasuhara
Frontiers in Marine Science, Volume 7; https://doi.org/10.3389/fmars.2020.00591

Abstract:
Gaoping Submarine Canyon (GPSC) off southwestern Taiwan is a high energy canyon connected to a small mountain river with extremely high sediment load (∼10 kt km–2 y–1). Due to heavy seasonal precipitation (>3,000 mm y–1) and high tectonic activity in the region, the GPSC is known for active sediment transport processes and associated submarine geohazards (e.g., submarine cable breaks). More importantly, strong internal tides have been recorded in the GPSC to drive head-ward, bottom-intensified currents, which result in sediment erosion and resuspension in response to the tidal cycles. To understand the effects of extreme physical conditions on marine nematodes, we sampled the surface sediments along the thalweg of upper GPSC and adjacent slope (200–1,100 m) using a multicorer in the summer and fall of 2015. We found that the nematode species, functional, trophic diversity and maturity dropped significantly in the GPSC as compared with slope communities, but the nematode abundances were not affected by the adverse conditions in the canyon. The non-selective deposit-feeding, fast colonizing nematodes (e.g., Sabatieria, Daptonema, Axonolaimus, and Metadesmolaimus) dominated the canyon seafloor. In contrast, other species of non-selective deposit feeders (Setosabatieria and Elzalia), epigrowth feeders (Craspodema), omnivores/predators (Paramesacanthion), and other species constituted the diverse nematode assemblages on the slope. We found that the strong bottom currents in the GPSC may depress the local nematode diversity by removing the organic-rich, fine-grained sediments; therefore, only the resilient or fast recovering nematode species could survive and prevail. The high species turnover with depth and between the canyon and slope habitats demonstrates that strong environmental filtering processes were the primary mechanism shaping the nematode community assembly off SW Taiwan. Between the canyon and slope, a considerable contribution of nestedness pattern also indicates some degree of local extinction and dispersal limitation in the dynamic GPSC.
Published: 12 June 2020
Global Change Biology, Volume 26, pp 4664-4678; https://doi.org/10.1111/gcb.15223

Abstract:
Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification and changing particulate organic carbon flux (one metric of altered food supplies), is projected to affect most deep‐ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep‐sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep‐seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach and full‐cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, earth‐system model projections of climate‐change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep‐seabed mining. Models that combine climate‐induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep‐seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral‐related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep‐ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.
, S. T. Ahyong, A. J. Gomez, M. E. Hendrickx, R. A. Peart, J. N. J. Weston
Deep-Sea Pycnogonids and Crustaceans of the Americas pp 1-24; https://doi.org/10.1007/978-3-030-58410-8_1

The publisher has not yet granted permission to display this abstract.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top