Refine Search

New Search

Results: 31

(searched for: doi:10.1210/er.2017-00226)
Save to Scifeed
Page of 1
Articles per Page
by
Show export options
  Select all
, Min Li, Tao Zhang
Published: 24 November 2021
Abstract:
MicroRNAs (miRNAs) regulate osteogenic differentiation and influence osteoporosis (OP). The aim of this study was to determine the potential role of miR-874-3p in OP. The expression levels of miR-874-3p and leptin (LEP) in the femoral neck trabeculae of 35 patients with or without OP were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The effects of miR-874-3p or LEP on the cell proliferation and alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osterix (OSX) levels were observed by upregulating miR-874-3p in human bone marrow mesenchymal stem cells (hBMSCs). Additionally, calcium deposition levels were evaluated using alizarin red staining (ARS). Molecular mechanisms of miR-874-3p and LEP underlying the osteogenic differentiation of hBMSCs were also evaluated using bioinformatics analysis, luciferase reporter assays, and RNA pull-down assays. The miR-874-3p levels were significantly lower in the femoral neck trabeculae of patients with OP than those of the control group, while the opposite was observed regarding the levels of LEP. Expression levels of miR-874-3p in hBMSCs were upregulated during osteogenic differentiation, while those of LEP were downregulated. Moreover, miR-874-3p upregulation promoted ALP, RUNX2, OCN, and OSX mRNA expression, cell proliferation, and calcium deposition in hBMSCs. LEP was found to be a target gene of miR-874-3p. Overexpression of LEP inhibited the expression of osteoblast markers and reversed the effect of osteogenic differentiation induced by the upregulation of miR-874-3p. In conclusion, miR-874-3p promoted the proliferation and differentiation of hBMSCs by downregulating the expression of LEP, thus inhibiting OP.
Qiting He, Ruixi Qin, Julie Glowacki, Shuanhu Zhou, Jie Shi, Shaoyi Wang, Yuan Gao,
Published: 30 October 2021
Stem Cell Research & Therapy, Volume 12, pp 1-13; https://doi.org/10.1186/s13287-021-02623-z

Abstract:
Vitamin D is important for the mineralization of bones by stimulating osteoblast differentiation of bone marrow mesenchymal stem cells (BMMSCs). BMMSCs are a target of vitamin D action, and the metabolism of 25(OH)D3 to biologically active 1α,25(OH)2D3 in BMMSCs promotes osteoblastogenesis in an autocrine/paracrine manner. Our previous study with human BMMSCs showed that megalin is required for the 25(OH)D3-DBP complex to enter cells and for 25(OH)D3 to stimulate osteoblast differentiation in BMMSCs. Furthermore, we reported that leptin up-regulates megalin in those cells. Leptin is a known inhibitor of PI3K/AKT-dependent chaperone-mediated autophagy (CMA). In this study, we tested the hypothesis that leptin acts synergistically with 25(OH)D3 to promote osteoblastogenesis in rat BMMSCs by a mechanism that entails inhibition of PI3K/AKT-dependent CMA. BMMSCs were isolated from rat bone marrow (4-week-old male SD rats); qRT-PCR and western immunoblots or immunofluorescence were used to evaluate the expression of megalin, ALP, COL1A1, RUNX2, OSX, OSP, and CMA in rBMMSCs. The osteoblast differentiation was evaluated by ALP activity, ALP staining, and calcium deposition. The viability of rBMMSCs was assessed with the CCK-8 kit. Biosynthesis of 1α,25(OH)2D3 was measured by a Rat 1α,25(OH)2D3 ELISA Kit. The combination of leptin and 25(OH)D3 treatment significantly enhanced osteoblast differentiation as shown by ALP activity, ALP staining, and calcium deposition, the expression of osteogenic genes ALP, COL1A1, RUNX2, OSX, and OSP by qRT-PCR and western immunoblots in rBMMSCs. Leptin enhanced the expression of megalin and synthesis of 1α,25(OH)2D3 in rBMMSCs. Our data showed that leptin inhibited CMA activity of rBMMSCs by activating PI3K/AKT signal pathway; the ability of leptin to enhance 25(OH)D3 promoted osteoblast differentiation of rBMMSCs was weakened by the PI3K/AKT signal pathway inhibitor. Our data reveal the mechanism by which leptin and 25(OH)D3 promote osteoblast differentiation in rBMMSCs. Leptin promoted the expression of megalin by inhibiting CMA, increased the utilization of 25(OH)D3 by rBMMSCs, and enhanced the ability of 25(OH)D3 to induce osteoblast differentiation of rBMMSCs. PI3K/AKT is at least partially involved in the regulation of CMA. These data indicate the importance of megalin in BMMSCs for vitamin D’s role in skeletal health.
Published: 22 October 2021
by MDPI
Nutrients, Volume 13; https://doi.org/10.3390/nu13113727

Abstract:
Osteoporosis currently afflicts 8 million postmenopausal women in the US, increasing the risk of bone fractures and morbidity, and reducing overall quality of life. We sought to define moderate exercise protocols that can prevent postmenopausal osteoporosis. Our previous findings singled out higher walking speed and pre-exercise meals as necessary for suppression of bone resorption and increasing of markers of bone formation. Since both studies were amenable to alternate biomechanical, nutritional, and circadian interpretations, we sought to determine the relative importance of higher speed, momentum, speed-enhanced load, duration of impulse, and meal timing on osteogenic response. We hypothesized that: (1) 20 min of exercise one hour after eating is sufficient to suppress bone resorption as much as a 40-min impulse and that two 20 min exercise bouts separated by 7 h would double the anabolic effect; (2) early morning exercise performed after eating will be as effective as mid-day exercise for anabolic outcome; and (3) the 08:00 h 40-min. exercise uphill would be as osteogenic as the 40-min exercise downhill. Healthy postmenopausal women, 8 each, were assigned to a no-exercise condition (SED) or to 40- or 20-min exercise bouts, spaced 7 h apart, for walking uphill (40 Up and 20 Up) or downhill (40 Down and 20 Down) to produce differences in biomechanical variables. Exercise was initiated at 08:00 h one hour after eating in 40-min groups, and also 7 h later, two hours after the midday meal, in 20-min groups. Measurements were made of CICP (c-terminal peptide of type I collagen), osteocalcin (OC), and bone-specific alkaline phosphatase (BALP), markers of bone formation, and of the bone resorptive marker CTX (c-terminal telopeptide of type 1 collagen). The osteogenic ratios CICP/CTX, OC/CTX, and BALP/CTX were calculated. Only the 40-min downhill exercise of suprathreshold speed-enhanced momentum, increased the three osteogenic ratios, demonstrating the necessity of a 40-min, and inadequacy of a 20-min, exercise impulse. The failure of anabolic outcome in 40-min uphill exercise was attributed to a sustained elevation of PTH concentration, as its high morning elevation enhances the CTX circadian rhythm. We conclude that postmenopausal osteoporosis can be prevented or mitigated in sedentary women by 45 min of morning exercise of suprathreshold speed-enhanced increased momentum performed shortly after a meal while walking on level ground, or by 40-min downhill, but not 40-min uphill, exercise to avoid circadian PTH oversecretion. The principal stimulus for the anabolic effect is exercise, but the prerequisite for a pre-exercise meal demonstrates the requirement for nutrient facilitation.
, Elena Tsourdi, Christian Meier, Andrea Palermo, Jessica Pepe, Jean-Jacques Body, M. Carola Zillikens
Published: 22 October 2021
The publisher has not yet granted permission to display this abstract.
Marta Mallardo, Sara Ferraro, Aurora Daniele,
Published: 15 October 2021
Molecular Biology Reports, Volume 48, pp 8171-8180; https://doi.org/10.1007/s11033-021-06785-0

Abstract:
Gestational diabetes mellitus (GDM) is a serious complication of pregnancy and is defined as a state of glucose intolerance that is first diagnosed and arises during gestation. Although the pathophysiology of GDM has not yet been thoroughly clarified, insulin resistance and pancreatic β-cell dysfunction are considered critical components of its etiopathogenesis. To sustain fetus growth and guarantee mother health, many significant changes in maternal metabolism are required in normal and high-risk pregnancy accompanied by potential complications. Adipokines, adipose tissue-derived hormones, are proteins with pleiotropic functions including a strong metabolic influence in physiological conditions and during pregnancy too. A growing number of studies suggest that various adipokines including adiponectin, leptin, visfatin, resistin and tumor necrosis factor α (TNF-α) are dysregulated in GDM and might have pathological significance and a prognostic value in this pregnancy disorder. In this review, we will focus on the current knowledge on the role that the aforementioned adipokines play in the development and progression of GDM.
International Journal of Environmental Research and Public Health, Volume 18; https://doi.org/10.3390/ijerph18189724

Abstract:
Congenital Generalized Lipodystrophy (CGL) is a rare syndrome characterized by the almost total absence of subcutaneous adipose tissue due to the inability of storing lipid in adipocytes. Patients present generalized lack of subcutaneous fat and normal to low weight. They evolve with severe metabolic disorders, non-alcoholic fatty liver disease, early cardiac abnormalities, and infectious complications. Although low body weight is a known risk factor for osteoporosis, it has been reported that type 1 and 2 CGL have a tendency of high bone mineral density (BMD). In this review, we discuss the role of bone marrow tissue, adipokines, and insulin resistance in the setting of the normal to high BMD of CGL patients. Data bases from Pubmed and LILACS were searched, and 113 articles published until 10 April 2021 were obtained. Of these, 76 were excluded for not covering the review topic. A manual search for additional literature was performed using the bibliographies of the studies located. The elucidation of the mechanisms responsible for the increase in BMD in this unique model of insulin resistance may contribute to the understanding of the interrelationships between bone, muscle, and adipose tissue in a pathophysiological and therapeutic perspective.
Tsutomu Endo, Yoshinao Koike, Hideaki Miyoshi, Yuichiro Hisada, Ryo Fujita, Ryota Suzuki, Masaru Tanaka, Takeru Tsujimoto, Yukitoshi Shimamura, Yuichi Hasegawa, et al.
Published: 31 August 2021
Scientific Reports, Volume 11, pp 1-10; https://doi.org/10.1038/s41598-021-96714-9

Abstract:
Ossification of the posterior longitudinal ligament (OPLL) of the spine is a disease of unknown etiology occurring frequently in individuals with metabolic disturbances. Obesity has been suggested as a potential risk factor for the severity of OPLL. We aimed to investigate whether non-alcoholic fatty liver disease (NAFLD) is associated with OPLL severity. We assessed the severity of NAFLD by a liver-to-spleen (L/S) ratio on computed tomography (CT) scans of 85 symptomatic OPLL patients at a single institution in Japan. We also assessed the severity of OPLL by CT reconstruction sagittal and axial images. The prevalence of NAFLD in middle-aged patients (age < 70 years, n = 50) was 80.3%, which was 2.5–8 times higher than that in the general Japanese population (9–30%). The ossification index of the spinal ligaments increased in proportion to the severity of fatty liver. The L/S ratio was revealed as a significant risk factor associated with the total ossification index (standardized β: -0.40, 95% confidence interval − 54.34 to − 4.22). This study suggests the potential contribution of NAFLD to the progression of OPLL. The close association between NAFLD and OPLL demonstrated in this study warrants further study to elucidate the causal nature of this relationship.
Ying Xue, Ran Li, Yong Zhao, Ling Li, Yun Zhou
Published: 26 August 2021
BMC Endocrine Disorders, Volume 21, pp 1-14; https://doi.org/10.1186/s12902-021-00843-1

Abstract:
Background Sleeve gastrectomy (SG) is a profoundly effective operation for severe obese patients, but is closely associated with bone mass loss. Previous studies have reported changes of various serum factors which may be associated with bone mass loss after SG. However, those results are contradictory. In this study, we assessed the effects of SG on bone mass, microstructure of femurs, and changes in bone turnover markers (BTMs), serum adipokines, inflammatory factors and gastrointestinal hormones after SG in high-fat diet (HFD) induced obese rats. Methods Eight-week-old male Sprague–Dawley (SD) rats were fed with HFD to induce obesity. Then, SG and sham surgery were performed in anesthetized obese rats. SD rats in control group were fed with standard chow. Microstructure of femurs was scanned and analyzed by micro-computed tomography in control group, HFD sham group and HFD SG group. Serum inflammatory factors, adipokines markers, gastrointestinal hormones and BTMs were also measured. Results Bone mineral density (BMD) of trabecular bone in both HFD sham group and HFD SG group were remarkably decreased compared with control group. All serum BTMs were significantly higher in HFD SG group than HFD sham group. In the meantime, serum levels of several important inflammatory factors, gastrointestinal hormones and adipokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, monocyte chemoattractant protein-1(MCP-1), ghrelin, insulin and leptin in HFD SG group were remarkably reduced compared with HFD sham group, whereas glucagon-like peptide-1 (GLP-1), adiponectin, fibroblast growth factor (FGF)-19 and FGF-21 were dramatically increased after SG. Protein tyrosine phosphatase 1B (PTP1B) was significantly increased in the HFD sham group than control group. Spearman’s correlation analysis indicated that serum osteocalcin (OC) and 25-hydroxy vitamin D3 (25(OH)D3) were positively correlated with BMD of trabecular bone, whereas serum PTP1B and TNF-α were negatively related to BMD of trabecular bone. Conclusions SG aggravates bone mass loss and activates bone remodeling in obese rats. Levels of BTMs, adipokines, inflammatory factors, and gastrointestinal hormones could be affected by SG in obese rats. Serum PTP1B level might be associated with abnormal bone mass in obese rats.
Danusha Siva Dharma, Noraini Abu Bakar, Basma Ezzat Mustafa
European Journal of Dentistry; https://doi.org/10.1055/s-0041-1727552

Abstract:
Materials and Methods A sample of 62 patients were selected prior to the orthodontic treatment from a population that attended the International Islamic University Malaysia Specialist Orthodontic Clinic. Based on the lateral cephalometric analysis, the subjects were grouped into Class I, Class II, and Class III facial skeletal patterns, according to Eastman and Wits appraisal. Subsequently, unstimulated saliva samples were taken and purified to undergo leptin enzyme-linked immunosorbent assay analysis to determine the levels of leptin hormone. Statistical analysis using the Kruskal–Wallis test was used to analyze the data obtained. Results The results showed that there was a significant difference between the levels of leptin hormone between Class I and Class II skeletal patterns and between Class I and Class III facial skeletal patterns. No statistical difference was noted between the levels of leptin of Class II and Class III facial skeletal patterns. Conclusion Salivary leptin hormone levels are higher in patients with Class II and Class III facial skeletal patterns compared with Class I.
Published: 9 August 2021
by MDPI
Journal of Personalized Medicine, Volume 11; https://doi.org/10.3390/jpm11080775

Abstract:
Previous studies have reported inconsistent results regarding the associations between metabolic syndrome (MetS) and obesity-related indices and bone mineral density (BMD). However, no previous studies have reported these associations among hemodialysis (HD) patients. The aims of this study were to investigate associations between MetS and its components and BMD T-score in HD patients and also between obesity-related indices and BMD T-score in HD patients with and without MetS. MetS was defined according to the Adult Treatment Panel III for Asians, and BMD T-score was calculated using dual-energy X-ray absorptiometry. Eight obesity-related indices were evaluated, including lipid accumulation product (LAP), visceral adiposity index (VAI), body adiposity index, conicity index (CI), body roundness index (BRI), abdominal volume index (AVI), waist-to-height ratio (WHtR), waist–hip ratio, and body mass index (BMI). One hundred and sixty-four patients undergoing HD were enrolled, and the prevalence of MetS was 61.6%. MetS was significantly associated with high lumbar spine and total hip T-scores. Regarding the MetS components, abdominal obesity and low HDL-C were significantly associated with high lumbar spine, femoral neck, and total hip T-scores; hypertriglyceridemia was significantly associated with high lumbar spine and total hip T-scores; hyperglycemia was significantly associated with a high lumbar spine T-score, whereas high blood pressure was not associated with T-score at any site. In the patients with MetS, BMI, WHtR, AVI, and BRI were significantly associated with T-score at all sites, and high CI, VAI, and LAP were also related to a high lumbar T-score. However, these indices were not associated with T-score at any site in patients without MetS. This study demonstrated positive associations between MetS and its five components and BMD T-score among HD patients. MetS, abdominal obesity, hypertriglyceridemia, and low HDL-cholesterol were associated with low risk of osteoporosis among the HD patients. Furthermore, we found that some obesity-related indices were associated with BMD T-score among HD patients with MetS but not in those without MetS. Our study highlights the importance of BMI, WHtR, AVI, and BRI in predicting the risk of osteoporosis among HD patients with MetS. In clinical practice, they can be easily calculated through simple anthropometric measurements and routine laboratory examinations and be used to quickly and conveniently assess the risk of osteoporosis among HD patients.
Published: 30 June 2021
by MDPI
Abstract:
Non-alcoholic fatty liver disease (NAFLD), which affects about a quarter of the global population, poses a substantial health and economic burden in all countries, yet there is no approved pharmacotherapy to treat this entity, nor well-established strategies for its diagnosis. Its prevalence has been rapidly driven by increased physical inactivity, in addition to excessive calorie intake compared to energy expenditure, affecting both adults and children. The increase in the number of cases, together with the higher morbimortality that this disease entails with respect to the general population, makes NAFLD a serious public health problem. Closely related to the development of this disease, there is a hormone derived from adipocytes, leptin, which is involved in energy homeostasis and lipid metabolism. Numerous studies have verified the relationship between persistent hyperleptinemia and the development of steatosis, fibrinogenesis and liver carcinogenesis. Therefore, further studies of the role of leptin in the NAFLD spectrum could represent an advance in the management of this set of diseases.
Journal für Klinische Endokrinologie und Stoffwechsel pp 1-6; https://doi.org/10.1007/s41969-021-00134-z

Abstract:
Zusammenfassung Der Knochenstoffwechsel ist ein komplexer Vorgang, der von zahlreichen Hormonen abhängt und durch ihre Wirkungen zeitlebens dynamisch beeinflusst wird. Nicht nur in der Zeit des Wachstums und in Hormonmangelphasen, sondern auch in den vielen Jahren des „stabilen Gleichgewichts“ im Erwachsenenalter sollte bei verminderter Knochendichte an hormonelle Veränderungen gedacht und vor allem auch eine bestehende Medikation des/der Patienten/in erfragt werden. Aufklärungsarbeit ist besonders wichtig in den kritischen Phasen der Pubertät und Menopause, wo die Verunsicherung der Patientinnen groß und der Einfluss der verschriebenen Hormonpräparate nicht zu unterschätzen ist. Der Knochenstoffwechsel wird von vielen Hormonen beeinflusst. In der Wachstumsphase ist Somatotropin und Östrogen bestimmend. Parathormon, Calcitonin und Leptin nehmen ebenso eine wichtige Rolle ein. Sie entfalten ihre Wirkung direkt durch Beeinflussung der Osteoblasten und Osteoklasten, aber auch indirekt durch den Vitamin-D-Stoffwechsel und Kontrolle des Körpergewichts. Ist ein Regelkreis gestört, büßen die Betroffenen Knochendichte ein, in jungen Jahren kann es zu vermindertem Körperwachstum kommen. Vor allem in der kritischen Phase vor Erreichen der Peak Bone Mass und in der Menopause ist die Funktion der Sexualhormone nicht zu unterschätzen. Besonderes Augenmerk liegt auf dem Einfluss der Kontrazeptiva und der Hormonersatztherapie, welche die Knochengesundheit maßgeblich beeinflussen können.
Lifei Liu, Jianmin Guo, Xi Chen, Xiaoyang Tong, ,
Frontiers in Cell and Developmental Biology, Volume 9; https://doi.org/10.3389/fcell.2021.668759

Abstract:
Exercise training promotes physical and bone health, and is the first choice of non-drug strategies that help to improve the prognosis and complications of many chronic diseases. Irisin is a newly discovered peptide hormone that modulates energy metabolism and skeletal muscle mass. Here, we discuss the role of irisin in bone metabolism via exercise-induced mechanical forces regulation. In addition, the role of irisin in pathological bone loss and other chronic diseases is also reviewed. Notably, irisin appears to be a key determinant of bone mineral status and thus may serve as a novel biomarker for bone metabolism. Interestingly, the secretion of irisin appears to be mediated by different forms of exercise and pathological conditions such as diabetes, obesity, and inflammation. Understanding the mechanism by which irisin is regulated and how it regulates skeletal metabolism via osteoclast and osteoblast activities will be an important step toward applying new knowledge of irisin to the treatment and prevention of bone diseases such as osteolysis and other chronic disorders.
Xi Shao, Yongqing Yang, Zhifen Tan, Yuanjun Ding, Erping Luo, Da Jing, Jing Cai
American Journal of Physiology-Endocrinology and Metabolism, Volume 320; https://doi.org/10.1152/ajpendo.00655.2020

Abstract:
Type 2 diabetes mellitus (T2DM) results in compromised bone microstructure and quality, and subsequently increased risks of fractures. However, it still lacks safe and effective approaches resisting T2DM bone fragility. Pulsed electromagnetic fields (PEMFs) exposure has proven to be effective in accelerating fracture healing and attenuating osteopenia/osteoporosis induced by estrogen deficiency. Nevertheless, whether and how PEMFs resist T2DM-associated bone deterioration remain not fully identified. The KK-Ay mouse was used as the T2DM model. We found that PEMF stimulation with 2 h/day for 8 wk remarkably improved trabecular bone microarchitecture, decreased cortical bone porosity, and promoted trabecular and cortical bone material properties in KK-Ay mice. PEMF stimulated bone formation in KK-Ay mice, as evidenced by increased serum levels of bone formation (osteocalcin and P1NP), enhanced bone formation rate, and increased osteoblast number. PEMF significantly suppressed osteocytic apoptosis and sclerostin expression in KK-Ay mice. PEMF exerted beneficial effects on osteoblast- and osteocyte-related gene expression in the skeleton of KK-Ay mice. Nevertheless, PEMF exerted no effect on serum biomarkers of bone resorption (TRAcP5b and CTX-1), osteoclast number, or osteoclast-specific gene expression ( TRAP and cathepsin K). PEMF upregulated gene expression of canonical Wnt ligands (including Wnt1, Wnt3a, and Wnt10b), but not noncanonical Wnt5a. PEMF also upregulated skeletal protein expression of downstream p-GSK-3β and β-catenin in KK-Ay mice. Moreover, PEMF-induced improvement in bone microstructure, mechanical strength, and bone formation in KK-Ay mice was abolished after intragastric administration with the Wnt antagonist ETC-159. Together, our results suggest that PEMF can improve bone microarchitecture and quality by enhancing the biological activities of osteoblasts and osteocytes, which are associated with the activation of the Wnt/β-catenin signaling pathway. PEMF might become an effective countermeasure against T2DM-induced bone deterioration. NEW & NOTEWORTHY PEMF improved trabecular bone microarchitecture and suppressed cortical bone porosity in T2DM KK-Ay mice. It attenuated T2DM-induced detrimental consequence on trabecular and cortical bone material properties. PEMF resisted bone deterioration in KK-Ay mice by enhancing osteoblast-mediated bone formation. PEMF also significantly suppressed osteocytic apoptosis and sclerostin expression in KK-Ay mice. The therapeutic potential of PEMF on T2DM-induced bone deterioration was associated with the activation of Wnt/ß-catenin signaling.
Published: 28 February 2021
by MDPI
Nutrients, Volume 13; https://doi.org/10.3390/nu13030802

Abstract:
Suppression of insulin-like growth factor 1 (IGF-1) and leptin secondary to low energy availability (LEA) may contribute to adverse effects on bone health. Whether a high-protein diet attenuates these effects has not been tested. Seven men completed three five-day conditions operationally defined as LEA (15 kcal kg fat-free mass (FFM)−1·day−1) with low protein (LEA-LP; 0.8 g protein·kg body weight (BW)−1), LEA with high protein (LEA-HP; 1.7 g protein·kg BW−1) and control (CON; 40 kcal·kg FFM−1·day−1, 1.7 g protein·kg BW−1). In all conditions, participants expended 15 kcal·kg FFM−1·day−1 during supervised cycling sessions. Serum samples were analyzed for markers of bone turnover, IGF-1 and leptin. The decrease in leptin during LEA-LP (−65.6 ± 4.3%) and LEA-HP (−54.3 ± 16.7%) was greater than during CON (−25.4 ± 11.4%; p = 0.02). Decreases in P1NP (p = 0.04) and increases in CTX-I (p = 0.04) were greater in LEA than in CON, suggesting that LEA shifted bone turnover in favour of bone resorption. No differences were found between LEA-LP and LEA-HP. Thus, five days of LEA disrupted bone turnover, but these changes were not attenuated by a high-protein diet.
Xiaoling Liu, Yuzhen Liang, , Weiming Liu, Qiong Yang, Caimei Wang
Published: 30 January 2021
3 Biotech, Volume 11, pp 1-12; https://doi.org/10.1007/s13205-021-02658-2

The publisher has not yet granted permission to display this abstract.
Published: 14 January 2021
by MDPI
International Journal of Molecular Sciences, Volume 22; https://doi.org/10.3390/ijms22020767

Abstract:
Between 5 and 10 percent of fractures do not heal, a condition known as nonunion. In clinical practice, stable fracture fixation associated with autologous iliac crest bone graft placement is the gold standard for treatment. However, some recalcitrant nonunions do not resolve satisfactorily with this technique. For these cases, biological alternatives are sought based on the molecular mechanisms of bone healing, whose most recent findings are reviewed in this article. The pro-osteogenic efficacy of morin (a pale yellow crystalline flavonoid pigment found in old fustic and osage orange trees) has recently been reported, and the combined use of bone morphogenetic protein-9 (BMP9) and leptin might improve fracture healing. Inhibition with methyl-piperidino-pyrazole of estrogen receptor alpha signaling delays bone regeneration. Smoking causes a chondrogenic disorder, aberrant activity of the skeleton’s stem and progenitor cells, and an intense initial inflammatory response. Smoking cessation 4 weeks before surgery is therefore highly recommended. The delay in fracture consolidation in diabetic animals is related to BMP6 deficiency (35 kDa). The combination of bioceramics and expanded autologous human mesenchymal stem cells from bone marrow is a new and encouraging alternative for treating recalcitrant nonunions.
, Gregory S. Schmidt, Tuan D. Nguyen, Francois O. Tuamokumo, Mohamed K.M. Shakir
Published: 28 December 2020
Endocrine Practice, Volume 27, pp 286-290; https://doi.org/10.1016/j.eprac.2020.10.010

The publisher has not yet granted permission to display this abstract.
Yassine Ouhaddi, Mehdi Najar, Frédéric Paré, Bertrand Lussier, Yoshihiro Urade, Mohamed Benderdour, Jean-Pierre Pelletier, Johanne Martel-Pelletier,
Published: 23 December 2020
Aging, Volume 12, pp 24778-24797; https://doi.org/10.18632/aging.202367

Abstract:
Osteoarthritis (OA) is the most common musculoskeletal disorder among the elderly. It is characterized by progressive cartilage degradation, synovial inflammation, subchondral bone remodeling and pain. Lipocalin prostaglandin D synthase (L-PGDS) is responsible for the biosynthesis of PGD2, which has been implicated in the regulation of inflammation and cartilage biology. This study aimed to evaluate the effect of L-PGDS deficiency on the development of naturally occurring age-related OA in mice.
Xiumao Li, Libin Jin, Yanbin Tan
Published: 20 November 2020
Molecular Medicine Reports, Volume 23, pp 1-1; https://doi.org/10.3892/mmr.2020.11708

Abstract:
Matrix metalloproteinase 2 (MMP2) is a well‑characterized protein that is indispensable for extracellular matrix remodeling and other pathological processes, such as tumor progression and skeletal dysplasia. Excessive activation of MMP2 promotes osteolytic metastasis and bone destruction in late‑stage cancers, while its loss‑of‑function mutations result in the decreased bone mineralization and generalized osteolysis occurring progressively in skeletal developmental disorders, particularly in multicentric osteolysis, nodulosis and arthropathy (MONA). Either upregulation or downregulation of MMP2 activity can result in the same osteolytic effects. Thus, different functions of MMP2 have been recently identified that could explain this observation. While MMP2 can degrade bone matrix, facilitate osteoclastogenesis and amplify various signaling pathways that enhance osteolysis in bone metastasis, its role in maintaining the number of bone cells, supporting osteocytic canalicular network formation and suppressing leptin‑mediated inhibition of bone formation has been implicated in osteolytic disorders caused by MMP2 deficiency. Furthermore, the proangiogenic activity of MMP2 is one of the potential mechanisms that are associated with both pathological situations. In the present article, the latest research on MMP2 in bone homeostasis is reviewed and the mechanisms underlying the role of this protein in skeletal metastasis and developmental osteolysis are discussed.
Qi Wang, Chi Wang, Wenhao Hu, Fanqi Hu, Weibo Liu,
Journal of Orthopaedic Surgery and Research, Volume 15, pp 1-9; https://doi.org/10.1186/s13018-020-01988-w

Abstract:
Background Adolescents with scoliosis consistently demonstrate lower body weight, lean muscle mass, and bone mineral density than healthy adolescent counterparts. Recent studies have focused on understanding how leptin and ghrelin signaling may play a role in adolescent idiopathic scoliosis (AIS). In our current study, we aim to evaluate the serum levels of leptin, soluble leptin receptor (sOB-R), and ghrelin in AIS patients through systematic review and meta-analysis. Methods We conducted our systematic review by searching the keywords in online databases including PubMed, Embase, Cochrane, Elsevier, Springer, and Web of Science from the time of database inception to January 2020. Inclusion criteria were studies that measure leptin, soluble leptin receptor (sOB-R), and ghrelin levels in AIS patients. Selection of studies, assessment of study quality, and data extraction were performed by two reviewers independently. Then, data was analyzed to calculate the mean difference and 95% confidence interval (CI). Results Seven studies concerning leptin/sOB-R and three studies concerning ghrelin were qualified for meta-analysis (one study concerning both leptin and ghrelin). Serum leptin of patients with AIS were significantly lower when compared with healthy controls, with the weighted mean difference (WMD) of − 0.95 (95% CI − 1.43 to − 0.48, p < 0.0001) after reducing the heterogeneity using six studies for meta-analysis, while sOB-R and ghrelin level was significantly higher in AIS group when compared with control group, with the WMD of 2.64 (95% CI 1.60 to 3.67, p < 0.001) and 1.42 (95% CI 0.48 to 2.35, p = 0.003), respectively. Conclusion Our current meta-analysis showed that serum level of leptin in AIS patients was significantly lower when compared with control subjects, while serum sOB-R and ghrelin levels were significantly higher in AIS patients. More clinical studies are still required to further validate the predictive value of leptin or ghrelin for the curve progression for AIS patients.
Experimental & Molecular Medicine, Volume 52, pp 1185-1197; https://doi.org/10.1038/s12276-020-0445-6

Abstract:
Bone growth and the maintenance of bone structure are controlled by multiple endocrine and paracrine factors, including cytokines expressed locally within the bone microenvironment and those that are elevated, both locally and systemically, under inflammatory conditions. This review focuses on those bone-active cytokines that initiate JAK–STAT signaling, and outlines the discoveries made from studying skeletal defects caused by induced or spontaneous modifications in this pathway. Specifically, this review describes defects in JAK1, STAT3, and SOCS3 signaling in mouse models and in humans, including mutations designed to modify these pathways downstream of the gp130 coreceptor. It is shown that osteoclast formation is generally stimulated indirectly by these pathways through JAK1 and STAT3 actions in inflammatory and other accessory cells, including osteoblasts. In addition, in bone remodeling, osteoblast differentiation is increased secondary to stimulated osteoclast formation through an IL-6-dependent pathway. In growth plate chondrocytes, STAT3 signaling promotes the normal differentiation process that leads to bone lengthening. Within the osteoblast lineage, STAT3 signaling promotes bone formation in normal physiology and in response to mechanical loading through direct signaling in osteocytes. This activity, particularly that of the IL-6/gp130 family of cytokines, must be suppressed by SOCS3 for the normal formation of cortical bone.
, Koroush Kabir, Jessica Bojko, Mona Khoury, Werner Masson, Anna Weber, Cäcilia Hilgers, Christoph Bourauel, Martin Steinmetz, Kristian Welle
Zeitschrift für Orthopädie und Unfallchirurgie; https://doi.org/10.1055/a-1194-5554

Abstract:
As the percentage of overweight individuals in the population rises, diseases associated with excess weight resulting from poor nutrition are becoming more and more widespread. So far, the influence of weight or nutrition on bone health has shown conflicting results. In the literature, the existing studies disagree about the effect of diet on bones. Therefore, this study investigated the impact of a long-term, high-fat, and high-cholesterol diet on the spine in a mouse model. Wild-type mice were randomly separated into two groups; one group received a high-fat and high-cholesterol diet, and a control group was fed with a regular diet since birth for a duration of 8 months. The first to fifth thoracic vertebrae were extracted and investigated using histology and micro-CT. Samples were analyzed regarding different parameters: percentage of bone structure compared to the whole vertebra and the amount and thickness of the trabeculae. Both methods of the analysis showed similar results. Diet did not have a significant impact on the bone density of the vertebrae. The micro-CT examination showed that the average bone percentage of the examined vertebra was 6% (p = 0.2330) higher in the control group compared to the diet group. The same tendency was demonstrated in histology even though with a smaller difference of only 5%. The results of both methods were comparable and showed trends for the influence of different diets but not significant impacts. In summary, this study showed that a high-fat and high-cholesterol diet has a slightly negative impact on bone density. In order to further analyze the effects of different diets on bone composition, structure, and density, additional long-term studies should be carried out, and more parameters such as movement and genetic factors should be analyzed. Furthermore, other parameters such as exercise and genetic factors that could have a secondary influence on obesity should be investigated.
Zewei Shen, on behalf of the China Kadoorie Biobank Collaborative Group, Canqing Yu, Yu Guo, Zheng Bian, Yuxia Wei, Huaidong Du, Ling Yang, Yiping Chen, Yulian Gao, et al.
Published: 19 April 2020
Archives of Osteoporosis, Volume 15, pp 1-10; https://doi.org/10.1007/s11657-020-00734-3

Abstract:
Summary In a Chinese population from both urban and rural areas, weight loss of ≥ 5 kg from early adulthood to midlife was associated with a higher risk of hip fracture and lower BMD in later life. Introduction This study investigates the association of the long-term weight loss from young adulthood through the middle ages with the subsequent 10-year risk of hospitalized fracture and calcaneus bone mineral density (BMD). Methods China Kadoorie Biobank (CKB) was established during 2004–2008 in ten areas across China. Weight at age 25 years was self-reported at baseline, and weight at baseline and resurvey was measured by the calibrated equipment. Outcomes were hospitalized fracture during follow-up and calcaneus BMD measured at resurvey. Analysis for fracture risk included 411,812 participants who were free of fracture in the last 5 years before baseline, cancer, or stroke at any time before baseline. Analysis for BMD included 21,453 participants who participated in the resurvey of 2013–2014 with the same exclusion criteria as above. Results The mean age was 50.8 at baseline and 58.4 at resurvey. Median weight change from age 25 to baseline was 4.4 kg, with 20.7% losing weight and 58.5% gaining weight. During a median follow-up of 10.1 years, we documented 13,065 cases of first diagnosed fracture hospitalizations, including 1222 hip fracture. Compared with participants whose weight was stable (± 2.4 kg), the adjusted hazard ratios (95% CIs) for those with weight loss of ≥ 5.0 kg from age 25 to baseline was 1.39 (1.17 to 1.66) for hip fracture. Weight loss was not associated with fracture risk at other sites. Those with weight loss from age 25 to resurvey had the lowest BMD measures, with β (95% CIs) of − 4.52 (− 5.08 to − 3.96) for broadband ultrasound attenuation (BUA), − 4.83 (− 6.98, − 2.67) for speed of sound (SOS), and − 4.36 (− 5.22, − 3.49) for stiffness index (SI). Conclusions Weight loss from early adulthood to midlife was associated with a higher risk of hip fracture and lower BMD in later life.
Bo Zhang, Lijuan Yang, Zongyue Zeng, Yixiao Feng, Xi Wang, Xiaoxing Wu, Huaxiu Luo, Jing Zhang, Meng Zhang, Mikhail Pakvasa, et al.
Stem Cells and Development, Volume 29, pp 498-510; https://doi.org/10.1089/scd.2019.0292

Abstract:
Mesenchymal stem cells (MSCs) are multipotent progenitors that have the ability to differentiate into multiple lineages, including bone, cartilage, and fat. We previously demonstrated that the least known bone morphogenetic protein (BMP)9 (also known as growth differentiation factor 2) is one of the potent osteogenic factors that can induce both osteogenic and adipogenic differentiation of MSCs. Nonetheless, the molecular mechanism underlying BMP9 action remains to be fully understood. Leptin is an adipocyte-derived hormone in direct proportion to the amount of body fat, and exerts pleiotropic functions, such as regulating energy metabolism, bone mass, and mineral density. In this study, we investigate the potential effect of leptin signaling on BMP9-induced osteogenic differentiation of MSCs. We found that exogenous leptin potentiated BMP9-induced osteogenic differentiation of MSCs both in vitro and in vivo, while inhibiting BMP9-induced adipogenic differentiation. BMP9 was shown to induce the expression of leptin and leptin receptor in MSCs, while exogenous leptin upregulated BMP9 expression in less differentiated MSCs. Mechanistically, we demonstrated that a blockade of JAK signaling effectively blunted leptin-potentiated osteogenic differentiation induced by BMP9. Taken together, our results strongly suggest that leptin may potentiate BMP9-induced osteogenesis by cross-regulating BMP9 signaling through the JAK/STAT signaling pathway in MSCs. Thus, it is conceivable that a combined use of BMP9 and leptin may be explored as a novel approach to enhancing efficacious bone regeneration and fracture healing.
Tatiane F. C. S. B. Beiler, João Neto, Juliana Cardoso Alves, Stephen Hamlet, Deepak Ipe,
Published: 25 February 2020
Odontology, Volume 108, pp 646-652; https://doi.org/10.1007/s10266-020-00502-2

The publisher has not yet granted permission to display this abstract.
, Yue Qi, Ronaldo F. Enriquez, Chi Kin Ip,
Published: 12 November 2019
Neuropeptides, Volume 80; https://doi.org/10.1016/j.npep.2019.101994

The publisher has not yet granted permission to display this abstract.
, Jessica J. Alm, Shuanhu Zhou
Regenerative Engineering and Translational Medicine, Volume 6, pp 310-321; https://doi.org/10.1007/s40883-019-00123-4

The publisher has not yet granted permission to display this abstract.
Jessica A. Keune, Adam J. Branscum, Carmen P. Wong, Urszula T. Iwaniec,
Published: 27 June 2019
Scientific Reports, Volume 9, pp 1-14; https://doi.org/10.1038/s41598-019-45587-0

Abstract:
Based on body weight, morbidly obese leptin-deficient ob/ob mice have less bone than expected, suggesting that leptin plays a role in the skeletal response to weight bearing. To evaluate this possibility, we compared the skeletal response of wild type (WT) and ob/ob mice to hindlimb unloading (HU). Mice were individually housed at 32 °C (thermoneutral) from 4 weeks of age (rapidly growing) to 16 weeks of age (approaching skeletal maturity). Mice were then randomized into one of 4 groups (n = 10/group): (1) WT control, (2) WT HU, (3) ob/ob control, and (4) ob/ob HU and the results analyzed by 2-way ANOVA. ob/ob mice pair-fed to WT mice had normal cancellous bone volume fraction (BV/TV) in distal femur, lower femur length and total bone area, mineral content (BMC) and density (BMD), and higher cancellous bone volume fraction in lumbar vertebra (LV). HU resulted in lower BMC and BMD in total femur, and lower BV/TV in distal femur and LV in both genotypes. Cancellous bone loss in femur in both genotypes was associated with increases in osteoclast-lined bone perimeter. In summary, leptin deficiency did not attenuate HU-induced osteopenia in male mice, suggesting that leptin is not required for bone loss induced by unweighting.
Shimao Yang, Hanghang Liu, Yao Liu, Li Liu, Wenmei Zhang,
Journal of Tissue Engineering and Regenerative Medicine, Volume 13, pp 2055-2066; https://doi.org/10.1002/term.2915

The publisher has not yet granted permission to display this abstract.
Anna Idelevich, Kazusa Sato, Kenichi Nagano, , Francesca Gori,
Journal of Bone and Mineral Research, Volume 34, pp 1707-1720; https://doi.org/10.1002/jbmr.3741

Abstract:
Energy metabolism and bone homeostasis share several regulatory pathways. The AP1 transcription factor ΔFosB and leptin both regulate energy metabolism and bone, yet whether their pathways intersect is not known. Transgenic mice overexpressing ΔFosB under the control of the Enolase 2 (ENO2) promoter exhibit high bone mass, high energy expenditure, low fat mass, and low circulating leptin levels. Because leptin is a regulator of bone and ΔFosB acts on leptin‐responsive ventral hypothalamic (VHT) neurons to induce bone anabolism, we hypothesized that regulation of leptin may contribute to the central actions of ΔFosB in the VHT. To address this question, we used adeno‐associated virus (AAV) expression of ΔFosB in the VHT of leptin‐deficient ob/ob mice and genetic crossing of ENO2‐ΔFosB with ob/ob mice. In both models, leptin deficiency prevented ΔFosB‐triggered reduction in body weight, increase in energy expenditure, increase in glucose utilization, and reduction in pancreatic islet size. In contrast, leptin deficiency failed to prevent ΔFosB‐triggered increase in bone mass. Unlike leptin deficiency, galanin deficiency blocked both the metabolic and the bone ΔFosB‐induced effects. Overall, our data demonstrate that, while the catabolic energy metabolism effects of ΔFosB require intact leptin and galanin signaling, the bone mass–accruing effects of ΔFosB require galanin but are independent of leptin. © 2019 American Society for Bone and Mineral Research.
Page of 1
Articles per Page
by
Show export options
  Select all
Back to Top Top