Abstract
Presented work focuses the attention on two regions of MOS structure placed in the vicinity of the semiconductor/dielectric interface, in particular: on part of dielectric layer and thin layer of the substrate. In the presented work the application of absorption as a tool that can vary the absorption depth of excitation light into the semiconductor substrate is discussed. The changes of the absorption depth of visible light allows to obtain Raman signal from places in the substrate placed at different distances from the dielectric/semiconductor interface. The series of Raman spectra obtained from visible excitation in the case of varying absorption depth allowed to analyze the structure of the substrate as a function of distance from the interface. Deep ultraviolet Raman study regarding part of silicon dioxide layer placed directly at the interface is not discussed so far which makes the analysis of the structure of this part of dielectric layer possible. Comparison of reported in this work Raman data with structure of silicon/silicon dioxide interface obtained from other experimental techniques proves the applicability of proposed methodology.