Mitigating arsenic accumulation in rice (Oryza sativa L.) using Fe-Mn-La-impregnated biochar composites in arsenic-contaminated paddy soil

Abstract
Arsenic (As) is a prominent metal contaminant of the soil in China. Pot experiments were conducted to examine the effects of corn stem powder biochar (BC) and Fe-Mn-La-impregnated biochar composites (FMLBC1, FMLBC2, and FMLBC3; BC:Fe:Mn:La at different weight ratios) on As accumulation in an indica cultivar of rice (Oryza sativa L.). The application of FMLBCs and BC improved the dry weight of the grains, leaves, stems, and roots of rice. The As uptake in different rice organs was significantly reduced in the FMLBC-amended soils (FMLBC3 > FMLBC2 > FMLBC1) compared with the BC treatment. Compared to the concentration of As in the control, the concentration of As in rice grains decreased by 56.0–89.4% with the addition of 2% FMLBC3. The application of FMLBCs significantly increased the ratio of essential amino acids in grains and the contents of Fe and Mn plaques on root surfaces. The reduction in As accumulation can be ascribed to the Fe, Mn, and La oxides that enhance the adsorption and retention of As, as well as the FMLBCs that provide nutrients and create a rhizosphere environment, promoting rice growth. This study demonstrated that applications of 2% FMLBC2 and FMLBC3 have the potential to remediate As-contaminated soils, reduce As accumulation in rice plants, and improve rice grain quality.
Funding Information
  • National Natural Science Foundation of China (41771525)