Ultra-Compact Microscale Heat Exchanger for Advanced Thermal Management in Data Centers

Abstract
The present study is focused on the experimental characterization of two-phase heat transfer performance and pressure drops within an ultra-compact heat exchanger (UCHE) suitable for electronics cooling applications. The UCHE is composed of a double-side-copper finned plate with an optimized geometry that enhances the heat transfer performance and flow stability, while minimizing the pressure drops. These features make the UCHE the ideal component for thermosyphon cooling systems, where low pressure drops are required to achieve high passive flow circulation rates and thus achieve high critical heat flux values. The UCHE's thermal-hydraulic performance is first evaluated in a pump-driven system at the Laboratory of Heat and Mass Transfer (LTCM-EPFL), where experiments include many configurations and operating conditions. Then, the UCHE is installed and tested as the condenser of a thermosyphon loop that rejects heat to a pumped refrigerant system at Nokia Bell Labs, in which both sides operate with refrigerants in phase change (condensation-to-boiling). Experimental results demonstrate high thermal performance with a maximum heat dissipation density of 5455 (kW/m3/K), which is significantly larger than conventional air-cooled heat exchangers and liquid-cooled small pressing depth brazed plate heat exchangers. Finally, a thermal performance analysis is presented that provides guidelines in terms of heat density dissipations at the server- and rack-level when using passive two-phase cooling.

This publication has 3 references indexed in Scilit: