The Effects of Anti-TGF-β1 on Epithelial–Mesenchymal Transition in the Pathogenesis of Adenomyosis

Abstract
Adenomyosis is defined as the presence of endometrial glands and stroma in the myometrium. The mechanisms associated with the pathogenesis of adenomyosis remain unclear. Epithelial–mesenchymal transition (EMT) is characterized by losing cell polarity and cell–cell adhesion together with gaining migratory and invasive properties of stromal cells to become mesenchymal stem cells. Transforming growth factor-β1 (TGF-β1), an anti-inflammatory cytokine secreted by multiple cell types, plays a crucial role in embryogenesis and tissue homeostasis. The induction of EMT and ultimate fibrosis by TGF-β1 is suggested to play a critical role in the pathogenesis of adenomyosis. Thus, this study aims to demonstrate the occurrence of EMT in and the effects of anti-TGF-β1 on the pathogenesis of adenomyosis. ICR mice were fed with 1 μg/g body weight of tamoxifen (TAM) by in the first 4 postnatal days (PNDs). Subsequently, the right and left uterine horns were correspondingly injected with or without 10 μg of anti-TGF-β1 neutralizing antibody on PND42 followed by sacrifice on PND64. E-cadherin, vimentin, and α-smooth muscle actin (α-SMA) expression in the uteri was evaluated by qRT-PCR, Western blot, and immunohistochemistry. Clusters of endometrial glands and increased numbers of vimentin-positive stromal cells in the disrupted α-SMA-positive myometrium were observed in the uteri from TAM-treated mice. Numbers of stromal cells in the myometrium and the disrupted myometrial continuity were reduced by anti-TGF-β1. Moreover, uterine expression of E-cadherin and vimentin/α-SMA was increased and decreased by anti-TGF-β1 treatment, respectively. Anti-TGF-β1 successfully inhibits EMT and the development of adenomyosis in mouse uteri.
Funding Information
  • E-Da Hospital Grants (EDAHP 106053,EDAHP107035,EDAHP108014, EDAHP10701)