E3 ligase MKRN3 is a tumor suppressor regulating PABPC1 ubiquitination in non–small cell lung cancer

Abstract
Central precocious puberty (CPP), largely caused by germline mutations in the MKRN3 gene, has been epidemiologically linked to cancers. MKRN3 is frequently mutated in non–small cell lung cancers (NSCLCs) with five cohorts. Genomic MKRN3 aberrations are significantly enriched in NSCLC samples harboring oncogenic KRAS mutations. Low MKRN3 expression levels correlate with poor patient survival. Reconstitution of MKRN3 in MKRN3-inactivated NSCLC cells directly abrogates in vitro and in vivo tumor growth and proliferation. MKRN3 knockout mice are susceptible to urethane-induced lung cancer, and lung cell–specific knockout of endogenous MKRN3 accelerates NSCLC tumorigenesis in vivo. A mass spectrometry–based proteomics screen identified PABPC1 as a major substrate for MKRN3. The tumor suppressor function of MKRN3 is dependent on its E3 ligase activity, and MKRN3 missense mutations identified in patients substantially compromise MKRN3-mediated PABPC1 ubiquitination. Furthermore, MKRN3 modulates cell proliferation through PABPC1 nonproteolytic ubiquitination and subsequently, PABPC1-mediated global protein synthesis. Our integrated approaches demonstrate that the CPP-associated gene MKRN3 is a tumor suppressor.
Funding Information
  • National Natural Science Foundation of China (82072974, 81572642)
  • Shanghai Science and Technology Commission (20JC1419200)
  • National Key Research and Development Program of China (2016YFC1302100)
  • Chinese Academy of Sciences (202002)
  • Chinese Academy of Sciences
  • China Medicine Education Association (2021-002)
  • Shanghai Changzheng Hospital