Phthalocyanine-Cored Fluorophores with Fluorene-Containing Peripheral Two-Photon Antennae as Photosensitizers for Singlet Oxygen Generation

Abstract
A series of free base and Zn(II) phthalocyanines featuring fluorenyl antennae linked by methoxy or oxo bridges to the phthalocyanine core (Pc) were synthesized and characterized. Selected linear and nonlinear (two-photon absorption) optical properties of these new compounds were subsequently studied. As previously observed for related porphyrin dendrimers bearing 2-fluorenyl peripheral dendrons, an efficient energy transfer occurs from the peripheral antennae to the central phthalocyanine core following excitation in the fluorenyl-based π–π* absorption band of these chromophores. Once excited, these compounds relax to the ground state, mostly by emitting intense red light or by undergoing intersystem crossing. As a result, the tetrafunctionalized Zn(II) phthalocyanines are fluorescent, but can also efficiently photosensitize molecular oxygen in tetrahydrofurane (THF), forming singlet oxygen with nearly comparable yields to bare Zn(II) phthalocyanine (ZnPc). In comparison with the latter complex, the positive role of the fluorenyl-containing antennae on one- and two-photon brightness (2PA) is presently demonstrated when appended in peripheral (β) position to the phthalocyanine core. Furthermore, when compared to known porphyrin analogues, the interest in replacing the porphyrin by a phthalocyanine as the central core to obtain more fluorescent two-photon oxygen photosensitizers is clearly established. As such, this contribution paves the way for the future development of innovative biphotonic photosensitizers usable in theranostics.

This publication has 71 references indexed in Scilit: