Chiral rings, Futaki invariants, plethystics, and Gröbner bases

Abstract
We study chiral rings of 4d $$ \mathcal{N} $$ N = 1 supersymmetric gauge theories via the notion of K-stability. We show that when using Hilbert series to perform the computations of Futaki invariants, it is not enough to only include the test symmetry information in the former’s denominator. We discuss a way to modify the numerator so that K-stability can be correctly determined, and a rescaling method is also applied to simplify the calculations involving test configurations. All of these are illustrated with a host of examples, by considering vacuum moduli spaces of various theories. Using Gröbner basis and plethystic techniques, many non-complete intersections can also be addressed, thus expanding the list of known theories in the literature.

This publication has 49 references indexed in Scilit: