Bearing Capacity of Defective Reinforced Concrete Pile in Sand-model Study

Abstract
Concrete piles that were poorly constructed or analyzed in their soil analyses may have structural or geotechnical defects. To examine such defects, an experimental study was conducted to investigate how a defective reinforced concrete pile behaved. These piles were installed and subjected to a compression axial load in the sand that had relative densities of 30%,60%, and 80%. The tests were performed using four concrete model piles: one intact pile and the other three piles had a structural defect (necking) at three different positions of the pile at (0.25 L from the top, center, and 0.25 L bottom). Geotechnical defect (soft layer or debris) was studied using Styrofoam layer at various vertical distances under the pile toe with Y/D = (0, 0.5, 1 and 1.5) D. The test results showed that the bearing capacity of the structural defect was the most in the case of a neck at 0.25 L from the bottom, followed by a neck at the center, and finally a neck at 0.25 L from the top. In the case of a geotechnical defect, the bearing capacity of the pile decreased with the decrease of the vertical distance between the soft layer and the pile toe.