MiR-29c-3p, a target miRNA of LINC01296, accelerates tumor malignancy: therapeutic potential of a LINC01296/miR-29c-3p axis in ovarian cancer

Abstract
As one of the main gynecological cancers, ovarian cancer (OC) has an unfavourable outcomes owing to its high recurrence and metastasis rate. Our previous studies have revealed that LINC01296 functions as an oncogene in OC, but the underlying mechanism has not been explored. The aim of this paper was to further investigate that how LINC01296 plays a role in OC. Through online software prediction, miR-29c-3p has been discriminated as the target miRNA of LINC01296 for further research, and subsequent luciferase assay confirmed bioinformatics prediction. Then the data obtained from the two databases (GSE119055 and GSE83693) were analyzed by GEO2R for differential gene analysis. The results indicated that the miR-29c-3p was lowly expressed in OC tissues than that in normal ovarian tissues, and its expression in recurrent OC tissues was lower than that in primary OC tissues. Simultaneously, Kaplan-Meier survival analysis illustrated that the lower expression of miR-29c-3p was interrelated to unfavourable outcomes of OC. Further, the qRT-PCR data revealed that the miR-29c-3p expression in OC cell lines (SKOV-3 and OVCAR-3) was markedly declined than that in normal control cells (IOSE80). Subsequently, the functional experiments, such as CCK8, colony formation and Transwell assays, prompted that inhibition of miR-29c-3p can obviously increase the proliferation, invasion and migration of OVCAR3 and SKOV3 cells compared with control group, while downregulation of LINC01296 showed an opposite result. It is worth noting that downregulation of LINC01296 can reverse the effect of miR-29c-3p suppression on OC cells. Finally, we detected the changes of EMT-related proteins by western blot experiment, and reached a similar conclusion that knockdown of LINC01296 reversed the EMT caused by miR-29c-3p inhibition. In sum up, the cancer-promoting function of LINC01296 was achieved by regulating the expression of miR-29c-3p, and LINC01296/miR-29c-3p axis mediates the mechanical regulation of EMT in OC cells, hoping to provide the novel biomarkers and possibilities for OC therapy.
Funding Information
  • The Shandong Provincial Science & Technology Advance Foundation (2011GGH27110)