Synthesis of Honeycomb‐Structured Beryllium Oxide via Graphene Liquid Cells

Abstract
Using high-resolution transmission electron microscopy and electron energy-loss spectroscopy, we show that beryllium oxide crystallizes in the planar hexagonal structure in a graphene liquid cell by a wet-chemistry approach. These liquid cells can feature van-der-Waals pressures up to 1 GPa, producing a miniaturized high-pressure container for the crystallization in solution. The thickness of as-received crystals is beyond the thermodynamic ultra-thin limit above which the wurtzite phase is energetically more favorable according to the theoretical prediction. The crystallization of the planar phase is ascribed to the near-free-standing condition afforded by the graphene surface. Our calculations show that the energy barrier of the phase transition is responsible for the observed thickness beyond the previously predicted limit. These findings open a new door for exploring aqueous-solution approaches of more metal-oxide semiconductors with exotic phase structures and properties in graphene-encapsulated confined cells.
Funding Information
  • National Natural Science Foundation of China (11974001, U1932153, 11974388, 21872172, 51472267, 21773303 and 51421002)
  • Defense Sciences Office, DARPA (HR0011-13-2-0016)
  • National Science Foundation (DMR-1410940, ECCS-1231808, 1362140)
  • Science and Technology Commission of Shanghai Municipality (14521100606)
  • Natural Science Foundation of Beijing Municipality (2192022, Z190011)