New Search

Export article
Open Access

Exploring the potential of machine learning for simulations of urban ozone variability

, , Kiran Sharma, Amit Sharma, Narendra Singh, Sachin S. Gunthe
Published: 18 November 2021

Abstract: Machine learning (ML) has emerged as a powerful technique in the Earth system science, nevertheless, its potential to model complex atmospheric chemistry remains largely unexplored. Here, we applied ML to simulate the variability in urban ozone (O3) over Doon valley of the Himalaya. The ML model, trained with past variations in O3 and meteorological conditions, successfully reproduced the independent O3 data (r2 ~ 0.7). Model performance is found to be similar when the variation in major precursors (CO and NOx) were included in the model, instead of the meteorology. Further the inclusion of both precursors and meteorology improved the performance significantly (r2 = 0.86) and the model could also capture the outliers, which are crucial for air quality assessments. We suggest that in absence of high-resolution measurements, ML modeling has profound implications for unraveling the feedback between pollution and meteorology in the fragile Himalayan ecosystem.
Keywords: Atmospheric chemistry / Environmental sciences / Science / Humanities and Social Sciences / multidisciplinary

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Scientific Reports" .
References (55)
    Cited by 4 articles
      Back to Top Top