Polysulfide and Hydrogen Sulfide Ameliorate Cisplatin-Induced Nephrotoxicity and Renal Inflammation through Persulfidating STAT3 and IKKβ

Abstract
Cisplatin, a widely used chemotherapy for the treatment of various tumors, is clinically limited due to its extensive nephrotoxicity. Inflammatory response in tubular cells is a driving force for cisplatin-induced nephrotoxicity. The plant-derived agents are widely used to relieve cisplatin-induced renal dysfunction in preclinical studies. Polysulfide and hydrogen sulfide (H2S) are ubiquitously expressed in garlic, and both of them are documented as potential agents for preventing and treating inflammatory disorders. This study was designed to determine whether polysulfide and H2S could attenuate cisplatin nephrotoxicity through suppression of inflammatory factors. In renal proximal tubular cells, we found that sodium tetrasulfide (Na2S4), a polysulfide donor, and sodium hydrosulfide (NaHS) and GYY4137, two H2S donors, ameliorated cisplatin-caused renal toxicity through suppression of the massive production of inflammatory cytokines, including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and cyclooxygenase-2 (COX-2). Mechanistically, the anti-inflammatory actions of Na2S4 and H2S may be mediated by persulfidation of signal transducer and activator of transcription 3 (STAT3) and inhibitor kappa B kinase β (IKKβ), followed by decreased phosphorylation of STAT3 and IKKβ. Moreover, the nuclear translocation of nuclear transcription factor kappa B (NF-κB), and phosphorylation and degradation of nuclear factor kappa B inhibitor protein alpha (IκBα) induced by cisplatin, were also mitigated by both polysulfide and H2S. In mice, after treatment with polysulfide and H2S donors, cisplatin-associated renal dysfunction was strikingly ameliorated, as evidenced by measurement of serum blood urea nitrogen (BUN) and creatinine levels, renal morphology, and the expression of renal inflammatory factors. Our present work suggests that polysulfide and H2S could afford protection against cisplatin nephrotoxicity, possibly via persulfidating STAT3 and IKKβ and inhibiting NF-κB-mediated inflammatory cascade. Our results might shed light on the potential benefits of garlic-derived polysulfide and H2S in chemotherapy-induced renal damage.