A Universal Construction to implement Concurrent Data Structure for NUMA-muticore

Abstract
Universal constructions are attractive as they can turn a sequential implementation of any data structure into a concurrent implementation. However, existing universal constructions have limitations, such as imposing high copying overhead, or poor scalability on NUMA systems mainly due to their lack of NUMA-aware design principles. To overcome these limitations, this paper introduces CR, a universal construction that provides highly scalable updates on NUMA systems while offering fast read-side performance. CR achieves NUMA-awareness by utilizing delegation within a NUMA node and a global shared log to maintain the consistency of replicas of data structures across nodes. Using CR does not require expertise in concurrent data structure design. Our evaluation shows that CR has up to 11.2 times better performance compared to a state-of-the-art universal construction CX on our tested sequential data structures. To demonstrate the effectiveness and applicability of CR, we have applied CR to an in-memory database system. The database shows up to 18.1 times better performance compared to the original version.

This publication has 17 references indexed in Scilit: