Abstract
When using aqueous hydrogen peroxide as oxidant, the process of the reaction of the liquid pro-pylene epoxidation by reaction-controlled phase transfer catalyst was studied in the organic sol-vent including reaction-controlled phase transfer catalyst and H2O2; the effects of reaction tem-perature, the ratio of raw materials, reaction time and H2O2 concentration on the epoxidation were investigated. Under the reaction condition, the stability of H2O2 and the phase transforma-tion of the catalyst were also researched. On the basis, the reaction kinetics was explored preli-minarily. The results showed that the reaction rate increased with increasing temperature; the optimal reaction temperature was 60˚C considering the factor of H2O2 decomposition; the reaction time can be controlled at about 100 min; the mole rate of raw material ( (mole)) was 3:1; the catalytic activity was closely related to its phase transition; when the dosage of catalyst was 0.3%, the concentration of H2O2 in 1.8 - 2.2 mmol/g was appropriate. The reaction rate equation was established according to the reaction equilibrium. The order and the rate constant of reaction of epoxy propane were calculated using the MATLAB program.