Using Deep Convolutional Neural Network for Image-Based Diagnosis of Nutrient Deficiencies in Plants Grown in Aquaponics

Abstract
In the aquaponic system, plant nutrients bioavailable from fish excreta are not sufficient for optimal plant growth. Accurate and timely monitoring of the plant’s nutrient status grown in aquaponics is a challenge in order to maintain the balance and sustainability of the system. This study aimed to integrate color imaging and deep convolutional neural networks (DCNNs) to diagnose the nutrient status of lettuce grown in aquaponics. Our approach consists of multi-stage procedures, including plant object detection and classification of nutrient deficiency. The robustness and diagnostic capability of proposed approaches were evaluated using a total number of 3000 lettuce images that were classified into four nutritional classes—namely, full nutrition (FN), nitrogen deficiency (N), phosphorous deficiency (P), and potassium deficiency (K). The performance of the DCNNs was compared with traditional machine learning (ML) algorithms (i.e., Simple thresholding, K-means, support vector machine; SVM, k-nearest neighbor; KNN, and decision Tree; DT). The results demonstrated that the deep proposed segmentation model obtained an accuracy of 99.1%. Also, the deep proposed classification model achieved the highest accuracy of 96.5%. These results indicate that deep learning models, combined with color imaging, provide a promising approach to timely monitor nutrient status of the plants grown in aquaponics, which allows for taking preventive measures and mitigating economic and production losses. These approaches can be integrated into embedded devices to control nutrient cycles in aquaponics.
Funding Information
  • Zhejiang province key research and development program. (2021C02023)