Simulation of Deep Water Wave Climate for the Indian Seas

Abstract
The ocean wave climate has a variety of applications in Naval defence. However, a long-term and reliable wave climate for the Indian Seas (The Arabian Sea and The Bay of Bengal) over a desired grid resolution could not be established so far due to several constraints. In this study, an attempt was made for the simulation of wave climate for the Indian Seas using the third-generation wave model (3g-WAM) developed by WAMDI group. The 3g-WAM as such was implemented at NPOL for research applications. The specific importance of this investigation was that, the model utilized a “mean climatic year of winds” estimated using historical wind measurements following statistical and probabilistic approaches as the winds which were considered for this purpose were widely scattered in space and time. Model computations were carried out only for the deep waters with current refraction. The gridded outputs of various wave parameters were stored at each grid point and the spectral outputs were stored at selected locations. Monthly, seasonal and annual distributions of significant wave parameters were obtained by post-processing some of the model outputs. A qualitative validation of simulated wave height and period parameters were also carried out by comparing with the observed data. The study revealed that the results of the wave climate simulation were quite promising and they can be utilized for various operational and ocean engineering applications.Therefore, this study will be a useful reference/demonstration for conducting such experiments in the areas where wind as well as wave measurements are insufficient.