New Search

Export article
Open Access

Impact of Separator Thickness on Temperature Distribution in Single Polymer Electrolyte Fuel Cell Based on 1D Heat Transfer

Akira Nishimura, Daiki Mishima, Nozomu Kono, Kyohei Toyoda, Mohan Lal Kolhe

Abstract: It is known from the New Energy and Industry Technology Development Organization (NEDO) roam map Japan, 2017 that the polymer electrolyte fuel cell (PEFC) power generation system is required to operate at 100°C for application of mobility usage from 2020 to 2025. This study aims to clarify the effect of separator thickness on the distribution of the temperature of reaction surface (Treact) at the initial temperature of cell (Tini) with flow rate, relative humidity (RH) of supply gases as well as RH of air surrounding cell of PEFC. The distribution of Treact is estimated by means of the heat transfer model considering the H2O vapor transfer proposed by the authors. The relationship between the standard deviation of Treact-Tini and total voltage obtained in the experiment is also investigated. We can know the effect of the flow rate of supply gas as well as RH of air surrounding cell of PEFC on the distribution of Treact-Tini is not significant. It is observed the wider distribution of Treact-Tini provides the reduction in power generation performance irrespective of separator thickness. In the case of separator thickness of 1.0 mm, the standard deviation of Treact-Tini has smaller distribution range and the total voltage shows a larger variation compared to the other cases.
Keywords: Polymer Electrolyte Fuel Cell / Heat Transfer Modeling / H2O Vapor Transfer / Temperature Distribution / High Temperature

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Energy and Power Engineering" .
References (44)
    Back to Top Top