High affinity promoter binding of STOP1 is essential for early expression of novel aluminum-induced resistance genes GDH1 and GDH2 in Arabidopsis

Abstract
Malate-efflux from roots, which is regulated by the transcription factor STOP1 (SENSITIVE-TO-PROTON-RHIZOTOXICITY1), which mediates aluminum-induced expression of ALUMINUM-ACTIVATED-MALATE-TRANSPORTER1 (AtALMT1), is critical for aluminum-resistance in Arabidopsis thaliana. Several studies showed that root AtALMT1 expression is rapidly observed in response to aluminum (within 1-hour), this early induction is an important mechanism to immediately protect roots from aluminum-toxicity. Additionally, identifying the molecular mechanisms that underlie rapid aluminum-resistance responses should lead to a better understanding of plant aluminum-sensing and -signal transduction mechanisms. In this study, histochemical analyses using GFP-tagged STOP1 proteins showed that STOP1 proteins were accumulated in the nucleus soon after aluminum-treatment. The rapid aluminum-induced STOP1-nuclear localization and AtALMT1-induction were observed in the presence of the protein synthesis inhibitor, suggesting that post-translational regulation is involved in these events. STOP1 also regulated rapid aluminum-induced expression for other genes that carry a functional/high-affinity STOP1-binding site in their promoter, including STOP2, GLUTAMATE-DEHYDROGENASE1 and 2 (GDH1 and 2), but not for Al resistance genes which have no functional STOP1-binding site such as ALUMINUM-SENSITIVE3, suggesting that the binding of STOP1 in the promoter is essential for the early induction. Finally, we report that GDH1 and 2 which are the target of STOP1 are novel aluminum-resistance genes in Arabidopsis.
Funding Information
  • Japan Society for the Promotion of Science (15H04468, 15KT0029, 18H02113)
  • JSPS research (13J08738)
  • Canada Excellence Research Chairs
  • Global Institute for Food Security

This publication has 84 references indexed in Scilit: