Modeling of resistive plasma response in toroidal geometry using an asymptotic matching approach

Abstract
The method of solving the linear resistive plasma response, based on the asymptotic matching approach, is developed for full toroidal tokamaks by upgrading the resistive DCON code [A. H. Glasser, Z. R. Wang, and J.-K. Park, Phys. Plasmas 23, 112506 (2016)]. The derived matching matrix, asymptotically matching the outer and inner regions, indicates that the applied three dimension (3-D) magnetic perturbations contribute additional small solutions at each resonant surface due to the toroidal coupling of poloidal modes. In contrast, the resonant harmonic only affects the corresponding resonant surface in the cylindrical plasma. The solution of the ideal outer region is critical to the asymptotic matching and is challenging in toroidal geometry due to the singular power series solution at the resonant surfaces. Thus, a systematic verification of the outer region Δ matrix is made by reproducing the well-known analytical Δ result in Furth et al. [Phys. Fluids 16, 1054–1063 (1073)] and by making a quantitative benchmark with the PEST3 code [A. Pletzer and R. L. Dewar, J. Plasma Phys. 45, 427–451 (1991)]. Finally, the reconstructed numerical solution of the resistive plasma response from the toroidal matching matrix is presented. Compared with the ideal plasma response, the global structure of the response can be affected by the small finite island at the resonant surfaces.
Funding Information
  • Fusion Energy Sciences (DE-AC02-09CH11466)