New Search

Export article
Open Access

Automated machine learning: the new data science challenge

Ilham Slimani, Nadia Slimani, Said Achchab, , , Nawal Sbiti, Mustapha Amghar

Abstract: The world is changing quite rapidly while increasingly tuning into digitalization. However, it is important to note that data science is what most technology is evolving around and data is definitely the future of everything. For industries, adopting a “data science approach” is no longer an option, it becomes an obligation in order to enhance their business rather than survive. This paper offers a roadmap for anyone interested in this research field or getting started with “machine learning” learning while enabling the reader to easily comprehend the key concepts behind. Indeed, it examines the benefits of automated machine learning systems, starting with defining machine learning vocabulary and basic concepts. Then, explaining how to, concretely, build up a machine learning model by highlighting the challenges related to data and algorithms. Finally, exposing a summary of two studies applying machine learning in two different fields, namely transportation for road traffic forecasting and supply chain management for demand prediction where the predictive performance of various models iscompared based on different metrics.
Keywords: machine learning / models / survive / data science / build / road / automated

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Back to Top Top