JMJD6 participates in the maintenance of ribosomal DNA integrity in response to DNA damage

Abstract
Ribosomal DNA (rDNA) is the most transcribed genomic region and contains hundreds of tandem repeats. Maintaining these rDNA repeats as well as the level of rDNA transcription is essential for cellular homeostasis. DNA damages generated in rDNA need to be efficiently and accurately repaired and rDNA repeats instability has been reported in cancer, aging and neurological diseases. Here, we describe that the histone demethylase JMJD6 is rapidly recruited to nucleolar DNA damage and is crucial for the relocalisation of rDNA in nucleolar caps. Yet, JMJD6 is dispensable for rDNA transcription inhibition. Mass spectrometry analysis revealed that JMJD6 interacts with the nucleolar protein Treacle and modulates its interaction with NBS1. Moreover, cells deficient for JMJD6 show increased sensitivity to nucleolar DNA damage as well as loss and rearrangements of rDNA repeats upon irradiation. Altogether our data reveal that rDNA transcription inhibition is uncoupled from rDNA relocalisation into nucleolar caps and that JMJD6 is required for rDNA stability through its role in nucleolar caps formation. Ribosomal DNA is composed of repeated sequences and is the most transcribed genomic region. Transcription of rDNA is essential for cellular homeostasis and cell proliferation. Numerous pathologies such as cancer and neurological disorders are associated with defective rDNA repeats maintenance. The mechanisms involved in the control of rDNA integrity involve major DNA repair pathways such as Non-Homologous End Joining and Homologous Recombination. However, how they are controlled and orchestrated is poorly understood. Here, we identified JMJD6 as a new member of the maintenance of rDNA integrity. We observed that JMJD6 controls the recruitment of NBS1 in the nucleolus in order to lead to the proper management of rDNA damages
Funding Information
  • Canadian Institutes of Health Research (FDN-143314)
  • Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-06124)
  • Fonds de Recherche du Québec - Santé (salary award)
  • Électricité de France (comité radioprotection)
  • Fondation ARC pour la Recherche sur le Cancer (programme ARC)
  • Ligue Contre le Cancer (equipe labellisée)