Highly Efficient Inverted Circularly Polarized Organic Light-Emitting Diodes

Abstract
Circularly polarized (CP) electroluminescence has been demonstrated as a strategy to improve the performance of organic light emitting diode (OLED) displays. CP emission can be generated from both small molecule and polymer OLEDs (SM-OLEDs and PLEDs), but to date, these devices suffer from low dissymmetry factors (g-factor <0.1), poor device performance, or a combination of the two. Here, we demonstrate the first CP-PLED employing an inverted device architecture. Through this approach, we demonstrate a highly efficient CP-PLED, with a current efficiency (CE) of 16.4 cd/A, a power efficiency (PE) of 16.6 lm/W, a maximum luminance of over 28,500 cd/m2, and a high EL dissymmetry (gEL) of 0.57. We find that the handedness of the emitted light is sensitive to the PLED device architecture: the sign of CP-EL from an identically prepared active layer reverses between inverted and conventional devices. The inverted structure affords the first demonstration of CP-PLEDs exhibiting both high efficiency and high dissymmetry – the two figures of merit which, until now, have been difficult to achieve at the same time. We also highlight device architecture and associated internal electric field to be a previously unexplored means to control the handedness of CP emission. Our findings significantly broaden the versatility of CP emissive devices and should enable their further application in a variety of other CP-dependent technologies.
Funding Information
  • Engineering and Physical Sciences Research Council (EP/L016702/1, EP/P000525/1, EP/R00188X/1)