Investigation into the crystallization of molecular sieve DNL-6

Abstract
Crystallization of DNL-6, a silicoaluminophosphate (SAPO) based molecular sieve with the RHO topology, was investigated under both the hydrothermal synthesis (HTS) and dry-gel conversion (DGC) conditions. Crystallization of DNL-6 under the HTS conditions is rather fast. But a combination of crystallization under the DGC conditions and reducing reaction temperature slow down the reactions, allowing for intermediates to be captured. Under the DGC conditions, DNL-6 crystallizes through a semi-crystalline layered phase. The nature of this intermediate is aluminophosphate (AlPO) rather than SAPO with most P atoms having a local environment of P(–O–Al)3(OH). The surfactant (cetyltrimethylammonium chloride) used for synthesis appears to be part of the layered intermediate. Si is directly incorporated in the DNL-6 framework via SM II mechanism when the semi-crystalline AlPO phase is transforming to DNL-6 with the assistance of a very small amount of water. Both the structure directing agent and the surfactant play a role in the formation of DNL-6, as they were found within the final synthesized products. SEM data show that hydrothermal synthesis produces a much more crystalline product. The facts that the semi-crystalline layered phase was also observed in the powder X-ray diffraction patterns of the solid samples obtained under the HTS conditions and that the evolution of the local structure around P and Al in the intermediate phases are similar imply that under the reaction conditions employed in the present study, the formation pathways of DNL-6 under the HTS and DGC conditions appear to have some similarities.