The State of the Heliosphere Revealed by Limb-halo Coronal Mass Ejections in Solar Cycles 23 and 24

Abstract
We compare the properties of halo coronal mass ejections (CMEs) that originate close to the limb (within a central meridian distance range of 60°–~90°) during solar cycles 23 and 24 to quantify the effect of the heliospheric state on CME properties. There are 44 and 38 limb halos in cycles 23 and 24, respectively. Normalized to the cycle-averaged total sunspot number, there are 42% more limb halos in cycle 24. Although the limb halos as a population are very fast (average speed ~1464 km s−1), cycle-24 halos are slower by ~26% than the cycle-23 halos. We introduce a new parameter, the heliocentric distance of the CME leading edge at the time a CME becomes a full halo; this height is significantly shorter in cycle 24 (by ~20%) and has a lower cutoff at ~6 R s . These results show that cycle-24 CMEs become halos sooner and at a lower speed than the cycle-23 ones. On the other hand, the flare sizes are very similar in the two cycles, ruling out the possibility of eruption characteristics contributing to the differing CME properties. In summary, this study reveals the effect of the reduced total pressure in the heliosphere that allows cycle-24 CMEs to expand more and become halos sooner than in cycle 23. Our findings have important implications for the space-weather consequences of CMEs in cycle 25 (predicted to be similar to cycle 24) and for understanding the disparity in halo counts reported by automatic and manual catalogs.